論文の概要: Learning Symbolic Task Representation from a Human-Led Demonstration: A Memory to Store, Retrieve, Consolidate, and Forget Experiences
- arxiv url: http://arxiv.org/abs/2404.10591v1
- Date: Tue, 16 Apr 2024 14:14:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:34:29.949450
- Title: Learning Symbolic Task Representation from a Human-Led Demonstration: A Memory to Store, Retrieve, Consolidate, and Forget Experiences
- Title(参考訳): 人力デモから記号的タスク表現を学習する:記憶の保存, 検索, 統合, 忘れられる体験
- Authors: Luca Buoncompagni, Fulvio Mastrogiovanni,
- Abstract要約: 認知的な記憶機能に着想を得たシンボリックラーニングフレームワークを提案する。
我々の主な貢献は、階層的な知識表現をブートストラップするための様々な記憶を調べるために使用できるフレームワークの形式化である。
- 参考スコア(独自算出の注目度): 3.0501524254444767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a symbolic learning framework inspired by cognitive-like memory functionalities (i.e., storing, retrieving, consolidating and forgetting) to generate task representations to support high-level task planning and knowledge bootstrapping. We address a scenario involving a non-expert human, who performs a single task demonstration, and a robot, which online learns structured knowledge to re-execute the task based on experiences, i.e., observations. We consider a one-shot learning process based on non-annotated data to store an intelligible representation of the task, which can be refined through interaction, e.g., via verbal or visual communication. Our general-purpose framework relies on fuzzy Description Logic, which has been used to extend the previously developed Scene Identification and Tagging algorithm. In this paper, we exploit such an algorithm to implement cognitive-like memory functionalities employing scores that rank memorised observations over time based on simple heuristics. Our main contribution is the formalisation of a framework that can be used to systematically investigate different heuristics for bootstrapping hierarchical knowledge representations based on robot observations. Through an illustrative assembly task scenario, the paper presents the performance of our framework to discuss its benefits and limitations.
- Abstract(参考訳): 本稿では,認知的な記憶機能(記憶,検索,統合,忘れなど)に着想を得たシンボリックラーニングフレームワークを提案する。
我々は,1つのタスクのデモンストレーションを行う非専門家と,経験に基づいてタスクを再実行するための構造化知識をオンラインで学習するロボットのシナリオに対処する。
本研究では,非注釈データに基づくワンショット学習プロセスについて検討し,対話や視覚的コミュニケーションなどを通じて,タスクの理解不能な表現を記憶する。
我々の汎用フレームワークはファジィ記述論理(fuzzy Description Logic)に依存しており、これまで開発されたシーン識別とタグ付けアルゴリズムを拡張してきた。
本稿では,このようなアルゴリズムを用いて,単純なヒューリスティックスに基づいて,時間とともに記憶された観測をランク付けするスコアを用いて,認知的な記憶機能を実装する。
我々の主な貢献は、ロボットの観察に基づいて階層的な知識表現をブートストラップするための様々なヒューリスティックを体系的に研究するために使用できるフレームワークの形式化である。
本報告では,実例的なアセンブリタスクのシナリオを通じて,そのメリットと限界について議論するため,フレームワークの性能について述べる。
関連論文リスト
- In-Memory Learning: A Declarative Learning Framework for Large Language
Models [56.62616975119192]
本研究では,人間ラベルデータに頼らずにエージェントが環境に整合できる新しい学習フレームワークを提案する。
このプロセス全体がメモリコンポーネント内で変換され、自然言語で実装される。
フレームワークの有効性を実証し、この問題に対する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-05T08:25:11Z) - Towards A Unified Agent with Foundation Models [18.558328028366816]
強化学習(RL)エージェントにそのような能力を組み込んで活用する方法を検討する。
我々は、言語を中核的推論ツールとして使用するフレームワークを設計し、エージェントが一連の基本的なRL課題にどのように取り組むことができるかを探る。
探索効率とオフラインデータセットからのデータの再利用能力において,ベースラインよりも大幅にパフォーマンスが向上したことを示す。
論文 参考訳(メタデータ) (2023-07-18T22:37:30Z) - Explaining Agent's Decision-making in a Hierarchical Reinforcement
Learning Scenario [0.6643086804649938]
強化学習(Reinforcement learning)は、行動心理学に基づく機械学習手法である。
本研究では,サブタスクからなる階層環境において,メモリベースで説明可能な強化学習手法を利用する。
論文 参考訳(メタデータ) (2022-12-14T01:18:45Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
我々は、未ラベルのシーン中心のデータから視覚表現を学習する問題に取り組む。
本研究では,データ駆動型セマンティックスロット,すなわちSlotConによる協調型セマンティックグルーピングと表現学習のためのコントラスト学習を提案する。
論文 参考訳(メタデータ) (2022-05-30T17:50:59Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Object Pursuit: Building a Space of Objects via Discriminative Weight
Generation [23.85039747700698]
視覚学習と理解のためのオブジェクト中心表現を継続的に学習するフレームワークを提案する。
我々は、オブジェクト中心の表現を学習しながら、オブジェクトとそれに対応するトレーニング信号の多様なバリエーションをサンプリングするために、インタラクションを活用する。
提案するフレームワークの重要な特徴について広範な研究を行い,学習した表現の特徴を分析した。
論文 参考訳(メタデータ) (2021-12-15T08:25:30Z) - Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene
Text Recognition [60.36540008537054]
本研究では,従来のテキスト認識における文字数カウントという暗黙のタスクを,追加的な注釈コストなしで発掘する。
両タスクの機能を適切に活用するために,2分岐の相反的特徴学習フレームワークを設計する。
7つのベンチマークの実験では、テキスト認識と新しい文字カウントタスクの両方において提案手法の利点が示されている。
論文 参考訳(メタデータ) (2021-05-13T12:27:35Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RLは、プロトタイプ表現を通じて表現学習と探索を結び付ける自己監督型フレームワークである。
これらのプロトタイプは、エージェントの探索経験の要約と同時に、観察を表す基盤としても機能する。
これにより、困難な連続制御タスクのセットで最新の下流ポリシー学習が可能になります。
論文 参考訳(メタデータ) (2021-02-22T18:56:34Z) - Memory-augmented Dense Predictive Coding for Video Representation
Learning [103.69904379356413]
本稿では,新しいアーキテクチャと学習フレームワーク Memory-augmented Predictive Coding (MemDPC) を提案する。
本稿では、RGBフレームからの視覚のみの自己教師付きビデオ表現学習や、教師なし光学フローからの学習、あるいはその両方について検討する。
いずれの場合も、トレーニングデータの桁数が桁違いに少ない他のアプローチに対して、最先端または同等のパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-08-03T17:57:01Z) - Explainable robotic systems: Understanding goal-driven actions in a
reinforcement learning scenario [1.671353192305391]
強化学習のシナリオでは、データ駆動アプローチによる説明の提供に多くの努力が注がれている。
本研究では,ロボットシナリオにおけるタスクを実行する強化学習エージェントの意思決定プロセスに焦点をあてる。
我々は、メモリベース、学習ベース、イントロスペクションベースの3つの異なるアプローチによって計算される成功確率を利用する。
論文 参考訳(メタデータ) (2020-06-24T10:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。