論文の概要: Exploring selective image matching methods for zero-shot and few-sample unsupervised domain adaptation of urban canopy prediction
- arxiv url: http://arxiv.org/abs/2404.10626v1
- Date: Tue, 16 Apr 2024 14:52:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:24:42.614102
- Title: Exploring selective image matching methods for zero-shot and few-sample unsupervised domain adaptation of urban canopy prediction
- Title(参考訳): 都市キャノピー予測のためのゼロショットと少数サンプルアン教師なし領域適応のための選択的画像マッチング手法の探索
- Authors: John Francis, Stephen Law,
- Abstract要約: リモートセンシングデータを用いて、天蓋のカバーと高さを新しい地理的設定に予測する訓練されたUNetの適応方法。
選択整列データに基づく画像マッチング手法は,ゼロショット設定で有望な結果が得られることがわかった。
最適な手法は, キャノピーカバーと高さタスクに対する画素分布適応とフーリエ領域適応であった。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore simple methods for adapting a trained multi-task UNet which predicts canopy cover and height to a new geographic setting using remotely sensed data without the need of training a domain-adaptive classifier and extensive fine-tuning. Extending previous research, we followed a selective alignment process to identify similar images in the two geographical domains and then tested an array of data-based unsupervised domain adaptation approaches in a zero-shot setting as well as with a small amount of fine-tuning. We find that the selective aligned data-based image matching methods produce promising results in a zero-shot setting, and even more so with a small amount of fine-tuning. These methods outperform both an untransformed baseline and a popular data-based image-to-image translation model. The best performing methods were pixel distribution adaptation and fourier domain adaptation on the canopy cover and height tasks respectively.
- Abstract(参考訳): 我々は、ドメイン適応型分類器と広範囲な微調整を訓練することなく、リモートセンシングデータを用いて、キャノピーカバーと高さを新しい地理的設定に予測する訓練されたマルチタスクUNetの適応方法を探る。
過去の研究を延長し、我々は2つの地理的領域で類似した画像を特定するための選択的なアライメントプロセスに従い、ゼロショット設定でデータベースの教師なしドメイン適応手法の配列を少量の微調整とともにテストした。
選択整列データに基づく画像マッチング手法は、ゼロショット設定で有望な結果をもたらす。
これらの手法は、非変換ベースラインと一般的なデータベース画像変換モデルの両方より優れている。
最適な手法は, キャノピーカバーと高さタスクの画素分布適応とフーリエ領域適応であった。
関連論文リスト
- Domain adaptive pose estimation via multi-level alignment [7.107028574274364]
ドメイン適応ポーズ推定は、ソースドメイン(合成された)データセットでトレーニングされたディープモデルが、ターゲットドメイン(現実世界)データセットで同様の結果を生成することを目的としている。
画像,特徴,ポーズのレベルで異なる領域をアライメントするマルチレベルドメイン適応アプラッハを提案する。
実験により,ポーズ推定における多レベルアライメント法により,顕著な改善が達成できることが示された。
論文 参考訳(メタデータ) (2024-04-23T10:13:31Z) - MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network [65.1004435124796]
本稿では,MB-RACS(Message-Bounds-based Rate-Adaptive Image Compressed Sensing Network)フレームワークを提案する。
実験により,提案手法が現在の先行手法を超越していることが実証された。
論文 参考訳(メタデータ) (2024-01-19T04:40:20Z) - BlenDA: Domain Adaptive Object Detection through diffusion-based
blending [10.457759140533168]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、ソースドメインからラベル付きデータを使用して学習したモデルを、ターゲットドメイン内のラベルなしデータに転送することを目的としている。
中間領域の擬似サンプルを生成することにより,領域適応型オブジェクト検出のための新しい正規化手法BlenDAを提案する。
Foggy Cityscapesデータセットで53.4%のmAPを達成し、前回の最先端を1.5%上回った。
論文 参考訳(メタデータ) (2024-01-18T12:07:39Z) - Self-supervised Domain-agnostic Domain Adaptation for Satellite Images [18.151134198549574]
このようなドメイン定義なしでドメイン適応を行うための自己教師付きドメイン非依存ドメイン適応(SS(DA)2)手法を提案する。
まず,2つの衛星画像パッチ間で画像と画像の変換を行うために,生成ネットワークのトレーニングを行う。
そして、異なる試験スペクトル特性でトレーニングデータを増強することにより、下流モデルの一般化性を向上させる。
論文 参考訳(メタデータ) (2023-09-20T07:37:23Z) - Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
臨床応用においては、トレーニング画像(ソース領域)とテスト画像(ターゲット領域)が異なる分布下にある場合、ドメインシフトは一般的な問題である。
本稿では,Few-Shot Unsupervised Domain Adaptation (FSUDA) の新たな手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T16:02:01Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
本稿では,グラフニューラルネットワークを用いた教師なし領域適応手法を提案する。
分布シフトを伴う2つの挑戦的医用画像データセットの分類法について検討した。
実験により,本手法は他の領域適応法と比較して最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2022-06-27T09:02:16Z) - Style Mixing and Patchwise Prototypical Matching for One-Shot
Unsupervised Domain Adaptive Semantic Segmentation [21.01132797297286]
ワンショットの教師なしドメイン適応では、セグメンタはトレーニング中にラベルなしのターゲットイメージを1つしか見ることができない。
このような計算負担を効果的に軽減できるOSUDA法を提案する。
提案手法は,ドメイン適応型セマンティックセグメンテーションのための2つの一般的なベンチマーク上で,最先端性能を実現する。
論文 参考訳(メタデータ) (2021-12-09T02:47:46Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
本稿では,ソースとターゲットの画素ペア間の画素レベルサイクルの関連性を構築することを提案する。
我々の手法は1段階のエンドツーエンドで訓練でき、追加のパラメータは導入しない。
論文 参考訳(メタデータ) (2020-10-31T00:11:36Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
教師なしのドメイン適応アルゴリズムは、あるドメインから学んだ知識を別のドメインに転送することを目的としている。
本稿では,新しい画素単位の対向領域適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-09T19:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。