Exploring selective image matching methods for zero-shot and few-sample unsupervised domain adaptation of urban canopy prediction
- URL: http://arxiv.org/abs/2404.10626v1
- Date: Tue, 16 Apr 2024 14:52:15 GMT
- Title: Exploring selective image matching methods for zero-shot and few-sample unsupervised domain adaptation of urban canopy prediction
- Authors: John Francis, Stephen Law,
- Abstract summary: Methods for adapting a trained UNet which predicts canopy cover and height to a new geographic setting using remotely sensed data.
We find that the selective aligned data-based image matching methods produce promising results in a zero-shot setting.
The best performing methods were pixel distribution adaptation and fourier domain adaptation on the canopy cover and height tasks respectively.
- Score: 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore simple methods for adapting a trained multi-task UNet which predicts canopy cover and height to a new geographic setting using remotely sensed data without the need of training a domain-adaptive classifier and extensive fine-tuning. Extending previous research, we followed a selective alignment process to identify similar images in the two geographical domains and then tested an array of data-based unsupervised domain adaptation approaches in a zero-shot setting as well as with a small amount of fine-tuning. We find that the selective aligned data-based image matching methods produce promising results in a zero-shot setting, and even more so with a small amount of fine-tuning. These methods outperform both an untransformed baseline and a popular data-based image-to-image translation model. The best performing methods were pixel distribution adaptation and fourier domain adaptation on the canopy cover and height tasks respectively.
Related papers
- Domain adaptive pose estimation via multi-level alignment [7.107028574274364]
Domain adaptive pose estimation aims to enable deep models trained on source domain (synthesized) datasets produce similar results on the target domain (real-world) datasets.
We propose a multi-level domain adaptation aproach, which aligns different domains at the image, feature, and pose levels.
Experimental results demonstrate that significant imrovement can be achieved by the proposed multi-level alignment method in pose estimation.
arXiv Detail & Related papers (2024-04-23T10:13:31Z) - MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network [65.1004435124796]
We propose a Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network (MB-RACS) framework.
Our experiments demonstrate that the proposed MB-RACS method surpasses current leading methods.
arXiv Detail & Related papers (2024-01-19T04:40:20Z) - BlenDA: Domain Adaptive Object Detection through diffusion-based
blending [10.457759140533168]
Unsupervised domain adaptation (UDA) aims to transfer a model learned using labeled data from the source domain to unlabeled data in the target domain.
We propose a novel regularization method for domain adaptive object detection, BlenDA, by generating the pseudo samples of the intermediate domains.
We achieve an impressive 53.4% mAP on the Foggy Cityscapes dataset, surpassing the previous state-of-the-art by 1.5%.
arXiv Detail & Related papers (2024-01-18T12:07:39Z) - Self-supervised Domain-agnostic Domain Adaptation for Satellite Images [18.151134198549574]
We propose an self-supervised domain-agnostic domain adaptation (SS(DA)2) method to perform domain adaptation without such a domain definition.
We first design a contrastive generative adversarial loss to train a generative network to perform image-to-image translation between any two satellite image patches.
Then, we improve the generalizability of the downstream models by augmenting the training data with different testing spectral characteristics.
arXiv Detail & Related papers (2023-09-20T07:37:23Z) - Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions.
We propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training.
arXiv Detail & Related papers (2023-09-03T16:02:01Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
arXiv Detail & Related papers (2022-06-27T09:02:16Z) - Style Mixing and Patchwise Prototypical Matching for One-Shot
Unsupervised Domain Adaptive Semantic Segmentation [21.01132797297286]
In one-shot unsupervised domain adaptation, segmentors only see one unlabeled target image during training.
We propose a new OSUDA method that can effectively relieve such computational burden.
Our method achieves new state-of-the-art performance on two commonly used benchmarks for domain adaptive semantic segmentation.
arXiv Detail & Related papers (2021-12-09T02:47:46Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
We propose to build the pixel-level cycle association between source and target pixel pairs.
Our method can be trained end-to-end in one stage and introduces no additional parameters.
arXiv Detail & Related papers (2020-10-31T00:11:36Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.