Assessing The Impact of CNN Auto Encoder-Based Image Denoising on Image Classification Tasks
- URL: http://arxiv.org/abs/2404.10664v2
- Date: Sun, 12 May 2024 21:42:09 GMT
- Title: Assessing The Impact of CNN Auto Encoder-Based Image Denoising on Image Classification Tasks
- Authors: Mohsen Hami, Mahdi JameBozorg,
- Abstract summary: This study presents a novel approach for defect detection in casting product noisy images, specifically focusing on submersible pump impellers.
The methodology involves utilizing deep learning models such as VGG16, InceptionV3, and other models in both the spatial and frequency domains.
The study achieved remarkable results using VGG16 for noise type classification in the frequency domain, achieving an accuracy of over 99%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Images captured from the real world are often affected by different types of noise, which can significantly impact the performance of Computer Vision systems and the quality of visual data. This study presents a novel approach for defect detection in casting product noisy images, specifically focusing on submersible pump impellers. The methodology involves utilizing deep learning models such as VGG16, InceptionV3, and other models in both the spatial and frequency domains to identify noise types and defect status. The research process begins with preprocessing images, followed by applying denoising techniques tailored to specific noise categories. The goal is to enhance the accuracy and robustness of defect detection by integrating noise detection and denoising into the classification pipeline. The study achieved remarkable results using VGG16 for noise type classification in the frequency domain, achieving an accuracy of over 99%. Removal of salt and pepper noise resulted in an average SSIM of 87.9, while Gaussian noise removal had an average SSIM of 64.0, and periodic noise removal yielded an average SSIM of 81.6. This comprehensive approach showcases the effectiveness of the deep AutoEncoder model and median filter, for denoising strategies in real-world industrial applications. Finally, our study reports significant improvements in binary classification accuracy for defect detection compared to previous methods. For the VGG16 classifier, accuracy increased from 94.6% to 97.0%, demonstrating the effectiveness of the proposed noise detection and denoising approach. Similarly, for the InceptionV3 classifier, accuracy improved from 84.7% to 90.0%, further validating the benefits of integrating noise analysis into the classification pipeline.
Related papers
- Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Robustness Enhancement in Neural Networks with Alpha-Stable Training
Noise [0.0]
We explore the possibility of stronger robustness for non-Gaussian impulsive noise, specifically alpha-stable noise.
By comparing the testing accuracy of models trained with Gaussian noise and alpha-stable noise on data corrupted by different noise, we find that training with alpha-stable noise is more effective than Gaussian noise.
We propose a novel data augmentation method that replaces Gaussian noise, which is typically added to the training data, with alpha-stable noise.
arXiv Detail & Related papers (2023-11-17T10:00:47Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
We present a large empirical study quantifying the sometimes severe loss in performance from different types of input noise for a range of datasets and model sizes.
We propose a light-weight method for detecting and removing such noise in the input during model inference without requiring any training, auxiliary models, or even prior knowledge of the type of noise.
arXiv Detail & Related papers (2022-12-20T00:33:11Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
Adversarial attacks disturb deep neural networks (DNNs) in various algorithms and frameworks.
We propose a novel purification approach, referred to as guided diffusion model for purification (GDMP)
On our comprehensive experiments across various datasets, the proposed GDMP is shown to reduce the perturbations raised by adversarial attacks to a shallow range.
arXiv Detail & Related papers (2022-05-30T10:11:15Z) - FINO: Flow-based Joint Image and Noise Model [23.9749061109964]
Flow-based joint Image and NOise model (FINO)
We propose a novel Flow-based joint Image and NOise model (FINO) that distinctly decouples the image and noise in the latent space and losslessly reconstructs them via a series of invertible transformations.
arXiv Detail & Related papers (2021-11-11T02:51:54Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - Heart Sound Classification Considering Additive Noise and Convolutional
Distortion [2.63046959939306]
Automatic analysis of heart sounds for abnormality detection is faced with the challenges of additive noise and sensor-dependent degradation.
This paper aims to develop methods to address the cardiac abnormality detection problem when both types of distortions are present in the cardiac auscultation sound.
The proposed method paves the way towards developing computer-aided cardiac auscultation systems in noisy environments using low-cost stethoscopes.
arXiv Detail & Related papers (2021-06-03T14:09:04Z) - Statistical Analysis of Signal-Dependent Noise: Application in Blind
Localization of Image Splicing Forgery [20.533239616846874]
In this work, we apply signal-dependent noise (SDN) to splicing localization tasks.
By building a maximum a posterior Markov random field (MAP-MRF) framework, we exploit the likelihood of noise to reveal the alien region of spliced objects.
Experimental results demonstrate that our method is effective and provides a comparative localization performance.
arXiv Detail & Related papers (2020-10-30T11:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.