Can Optical Denoising Clean Sonar Images? A Benchmark and Fusion Approach
- URL: http://arxiv.org/abs/2503.01655v2
- Date: Sun, 20 Jul 2025 12:00:19 GMT
- Title: Can Optical Denoising Clean Sonar Images? A Benchmark and Fusion Approach
- Authors: Ziyu Wang, Tao Xue, Jingyuan Li, Haibin Zhang, Zhiqiang Xu, Gaofei Xu, Zhen Wang, Yanbin Wang, Zhiquan Liu,
- Abstract summary: Object detection in sonar images is crucial for underwater robotics applications.<n>While denoising techniques have achieved remarkable success in optical imaging, their applicability to sonar data remains underexplored.<n>This study presents the first systematic evaluation of nine state-of-the-art deep denoising models with distinct architectures.
- Score: 24.02055678758872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection in sonar images is crucial for underwater robotics applications including autonomous navigation and resource exploration. However, complex noise patterns inherent in sonar imagery, particularly speckle, reverberation, and non-Gaussian noise, significantly degrade detection accuracy. While denoising techniques have achieved remarkable success in optical imaging, their applicability to sonar data remains underexplored. This study presents the first systematic evaluation of nine state-of-the-art deep denoising models with distinct architectures, including Neighbor2Neighbor with varying noise parameters, Blind2Unblind with different noise configurations, and DSPNet, for sonar image preprocessing. We establish a rigorous benchmark using five publicly available sonar datasets and assess their impact on four representative detection algorithms: YOLOX, Faster R-CNN, SSD300, and SSDMobileNetV2. Our evaluation addresses three unresolved questions: first, how effectively optical denoising architectures transfer to sonar data; second, which model families perform best against sonar noise; and third, whether denoising truly improves detection accuracy in practical pipelines. Extensive experiments demonstrate that while denoising generally improves detection performance, effectiveness varies across methods due to their inherent biases toward specific noise types. To leverage complementary denoising effects, we propose a mutually-supervised multi-source denoising fusion framework where outputs from different denoisers mutually supervise each other at the pixel level, creating a synergistic framework that produces cleaner images.
Related papers
- A Self-Supervised Denoising Strategy for Underwater Acoustic Camera Imageries [3.0918473503782042]
This paper introduces a novel strategy for denoising acoustic camera images using deep learning techniques.
It successfully removes noise while preserving fine feature details, thereby enhancing the performance of local feature matching.
arXiv Detail & Related papers (2024-06-05T04:07:37Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Deep Variation Prior: Joint Image Denoising and Noise Variance
Estimation without Clean Data [2.3061446605472558]
This paper investigates the tasks of image denoising and noise variance estimation in a single, joint learning framework.
We build upon DVP, an unsupervised deep learning framework, that simultaneously learns a denoiser and estimates noise variances.
Our method does not require any clean training images or an external step of noise estimation, and instead, approximates the minimum mean squared error denoisers using only a set of noisy images.
arXiv Detail & Related papers (2022-09-19T17:29:32Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
Much research has been conducted on classifying cracks from image data using deep convolutional neural networks.
This paper will investigate the influence of image noise on network accuracy.
AlexNet was selected as the most efficient model based on the proposed index.
arXiv Detail & Related papers (2021-11-03T09:08:54Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
arXiv Detail & Related papers (2021-08-04T16:36:29Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
We introduce Noise2Same, a novel self-supervised denoising framework.
In particular, Noise2Same requires neither J-invariance nor extra information about the noise model.
Our results show that our Noise2Same remarkably outperforms previous self-supervised denoising methods.
arXiv Detail & Related papers (2020-10-22T18:12:26Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises.
Previous image-based method leads to noise overfitting if directly applied to video denoisers.
We propose a general framework for video denoising networks that successfully addresses these challenges.
arXiv Detail & Related papers (2020-07-07T07:19:48Z) - Deep Learning on Image Denoising: An overview [92.07378559622889]
We offer a comparative study of deep techniques in image denoising.
We first classify the deep convolutional neural networks (CNNs) for additive white noisy images.
Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis.
arXiv Detail & Related papers (2019-12-31T05:03:57Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.