Driver Fatigue Prediction using Randomly Activated Neural Networks for Smart Ridesharing Platforms
- URL: http://arxiv.org/abs/2404.10684v1
- Date: Tue, 16 Apr 2024 16:04:11 GMT
- Title: Driver Fatigue Prediction using Randomly Activated Neural Networks for Smart Ridesharing Platforms
- Authors: Sree Pooja Akula, Mukund Telukunta, Venkata Sriram Siddhardh Nadendla,
- Abstract summary: Drivers in ridesharing platforms exhibit cognitive atrophy and fatigue as they accept ride offers along the day.
This paper proposes a novel Dynamic Satisficing (DDS) to model and predict driver's ride decisions during a given shift.
Using both simulation experiments as well as on real Chicago taxi dataset, this paper demonstrates the improved performance of the proposed approach.
- Score: 0.21847754147782888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drivers in ridesharing platforms exhibit cognitive atrophy and fatigue as they accept ride offers along the day, which can have a significant impact on the overall efficiency of the ridesharing platform. In contrast to the current literature which focuses primarily on modeling and learning driver's preferences across different ride offers, this paper proposes a novel Dynamic Discounted Satisficing (DDS) heuristic to model and predict driver's sequential ride decisions during a given shift. Based on DDS heuristic, a novel stochastic neural network with random activations is proposed to model DDS heuristic and predict the final decision made by a given driver. The presence of random activations in the network necessitated the development of a novel training algorithm called Sampling-Based Back Propagation Through Time (SBPTT), where gradients are computed for independent instances of neural networks (obtained via sampling the distribution of activation threshold) and aggregated to update the network parameters. Using both simulation experiments as well as on real Chicago taxi dataset, this paper demonstrates the improved performance of the proposed approach, when compared to state-of-the-art methods.
Related papers
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Autonomous Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes dataset demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Traffic Pattern Classification in Smart Cities Using Deep Recurrent
Neural Network [0.519400993594577]
We propose a novel approach to traffic pattern classification based on deep recurrent neural networks.
The proposed model combines convolutional and recurrent layers to extract features from traffic pattern data.
The results show that the proposed model can accurately classify traffic patterns in smart cities with a precision of as high as 95%.
arXiv Detail & Related papers (2024-01-24T20:24:32Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Spatial-Temporal Map Vehicle Trajectory Detection Using Dynamic Mode
Decomposition and Res-UNet+ Neural Networks [0.0]
This paper presents a machine-learning-enhanced longitudinal scanline method to extract vehicle trajectories from high-angle traffic cameras.
The Dynamic Mode Decomposition (DMD) method is applied to extract vehicle strands by decomposing the Spatial-Temporal Map (STMap) into the sparse foreground and low-rank background.
A deep neural network named Res-UNet+ was designed for the semantic segmentation task by adapting two prevalent deep learning architectures.
arXiv Detail & Related papers (2022-01-13T00:49:24Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
This work aims to obtain an accurate model for the prediction of the steering angle in an automated driving system.
BO was able to identify, within a limited number of trials, a model -- namely BOST-LSTM -- which resulted, the most accurate when compared to classical end-to-end driving models.
arXiv Detail & Related papers (2021-10-22T15:25:14Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
We propose a deep reinforcement learning based solution for order dispatching.
We conduct large scale online A/B tests on DiDi's ride-dispatching platform.
Results show that CVNet consistently outperforms other recently proposed dispatching methods.
arXiv Detail & Related papers (2021-06-08T16:27:04Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - Driving Style Representation in Convolutional Recurrent Neural Network
Model of Driver Identification [8.007800530105191]
We present a deep-neural-network architecture, we term D-CRNN, for building high-fidelity representations for driving style.
Using CNN, we capture semantic patterns of driver behavior from trajectories.
We then find temporal dependencies between these semantic patterns using RNN to encode driving style.
arXiv Detail & Related papers (2021-02-11T04:33:43Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
We propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model.
This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets.
We also present an effective system to represent pedestrian positions and powerful data augmentation techniques.
arXiv Detail & Related papers (2020-10-12T15:51:01Z) - DSDNet: Deep Structured self-Driving Network [92.9456652486422]
We propose the Deep Structured self-Driving Network (DSDNet), which performs object detection, motion prediction, and motion planning with a single neural network.
We develop a deep structured energy based model which considers the interactions between actors and produces socially consistent multimodal future predictions.
arXiv Detail & Related papers (2020-08-13T17:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.