論文の概要: Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution
- arxiv url: http://arxiv.org/abs/2404.10688v1
- Date: Tue, 16 Apr 2024 16:08:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:14:57.607219
- Title: Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution
- Title(参考訳): 画像超解像のための確率フローサンプリングによる効率的な条件拡散モデル
- Authors: Yutao Yuan, Chun Yuan,
- Abstract要約: 画像超解像のための確率フローサンプリングを用いた効率的な条件拡散モデルを提案する。
提案手法は,既存の拡散型画像超解像法よりも高画質化を実現している。
- 参考スコア(独自算出の注目度): 35.55094110634178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image super-resolution is a fundamentally ill-posed problem because multiple valid high-resolution images exist for one low-resolution image. Super-resolution methods based on diffusion probabilistic models can deal with the ill-posed nature by learning the distribution of high-resolution images conditioned on low-resolution images, avoiding the problem of blurry images in PSNR-oriented methods. However, existing diffusion-based super-resolution methods have high time consumption with the use of iterative sampling, while the quality and consistency of generated images are less than ideal due to problems like color shifting. In this paper, we propose Efficient Conditional Diffusion Model with Probability Flow Sampling (ECDP) for image super-resolution. To reduce the time consumption, we design a continuous-time conditional diffusion model for image super-resolution, which enables the use of probability flow sampling for efficient generation. Additionally, to improve the consistency of generated images, we propose a hybrid parametrization for the denoiser network, which interpolates between the data-predicting parametrization and the noise-predicting parametrization for different noise scales. Moreover, we design an image quality loss as a complement to the score matching loss of diffusion models, further improving the consistency and quality of super-resolution. Extensive experiments on DIV2K, ImageNet, and CelebA demonstrate that our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods while having lower time consumption. Our code is available at https://github.com/Yuan-Yutao/ECDP.
- Abstract(参考訳): 画像超解像は、1つの低解像度画像に対して複数の有効な高解像度画像が存在するため、根本的な問題である。
拡散確率モデルに基づく超解像法は、低解像度画像に条件付けられた高解像度画像の分布を学習することで、PSNR指向の方法でのぼやけた画像の問題を回避し、不適切な性質に対処することができる。
しかし, 既存の拡散型超解像法では, 反復サンプリングを用いることで高消費電力化が可能であり, カラーシフトなどの問題により, 生成画像の品質と一貫性は理想的ではない。
本稿では,画像超解像のための確率フローサンプリング(ECDP)を用いた効率的な条件拡散モデルを提案する。
時間消費を削減するため,画像超解像のための連続時間条件拡散モデルの設計を行った。
さらに、生成した画像の整合性を改善するために、データ予測パラメトリゼーションとノイズ予測パラメトリゼーションを補間するデノイザネットワークのハイブリッドパラメトリゼーションを提案する。
さらに、拡散モデルのスコアマッチング損失を補完する画像品質損失を設計し、さらに超解像の一貫性と品質を改善した。
DIV2K, ImageNet, CelebAの広汎な実験により, 従来の拡散型画像超解像法よりも高画質化を実現し, 時間消費の低減が図られた。
私たちのコードはhttps://github.com/Yuan-Yutao/ECDP.comで公開されています。
関連論文リスト
- ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
拡散に基づく画像超解像法(SR)は主に低推論速度によって制限される。
本稿では,SRの拡散段数を大幅に削減する新しい,効率的な拡散モデルを提案する。
本手法は,残差をシフトすることで高分解能画像と低分解能画像の間を移動させるマルコフ連鎖を構成する。
論文 参考訳(メタデータ) (2023-07-23T15:10:02Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
拡散モデルのランダム性は非効率性と不安定性をもたらすため、SR結果の品質を保証することは困難である。
本稿では,一連の拡散型SR手法の恩恵を受ける可能性を持つプラグアンドプレイサンプリング手法を提案する。
提案手法によりサンプリングされたSR結果の質は, 学習前の拡散ベースSRモデルと同一のランダム性を有する現在の手法でサンプリングされた結果の質より優れる。
論文 参考訳(メタデータ) (2023-05-24T17:09:54Z) - CDPMSR: Conditional Diffusion Probabilistic Models for Single Image
Super-Resolution [91.56337748920662]
拡散確率モデル(DPM)は画像から画像への変換において広く採用されている。
単純だが自明なDPMベースの超解像後処理フレームワーク,すなわちcDPMSRを提案する。
本手法は, 定性的および定量的な結果の両面において, 先行試行を超越した手法である。
論文 参考訳(メタデータ) (2023-02-14T15:13:33Z) - Pyramidal Denoising Diffusion Probabilistic Models [43.9925721757248]
位置埋め込みを訓練した単一スコア関数を用いて高分解能画像を生成する新しいピラミッド拡散モデルを提案する。
これにより、画像生成のための時間効率のサンプリングが可能になり、限られたリソースでトレーニングする際のバッチサイズの問題も解決できる。
論文 参考訳(メタデータ) (2022-08-03T06:26:18Z) - Diverse super-resolution with pretrained deep hiererarchical VAEs [6.257821009472099]
画像超解像問題に対する多種多様な解を生成する問題について検討する。
我々は、事前訓練されたHVAEの潜在空間における低解像度画像を符号化する軽量エンコーダを訓練する。
推論では,低解像度エンコーダと事前学習した生成モデルを組み合わせて画像の超解像を行う。
論文 参考訳(メタデータ) (2022-05-20T17:57:41Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。