Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution
- URL: http://arxiv.org/abs/2404.10688v1
- Date: Tue, 16 Apr 2024 16:08:59 GMT
- Title: Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution
- Authors: Yutao Yuan, Chun Yuan,
- Abstract summary: We propose an efficient conditional diffusion model with probability flow sampling for image super-resolution.
Our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods.
- Score: 35.55094110634178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image super-resolution is a fundamentally ill-posed problem because multiple valid high-resolution images exist for one low-resolution image. Super-resolution methods based on diffusion probabilistic models can deal with the ill-posed nature by learning the distribution of high-resolution images conditioned on low-resolution images, avoiding the problem of blurry images in PSNR-oriented methods. However, existing diffusion-based super-resolution methods have high time consumption with the use of iterative sampling, while the quality and consistency of generated images are less than ideal due to problems like color shifting. In this paper, we propose Efficient Conditional Diffusion Model with Probability Flow Sampling (ECDP) for image super-resolution. To reduce the time consumption, we design a continuous-time conditional diffusion model for image super-resolution, which enables the use of probability flow sampling for efficient generation. Additionally, to improve the consistency of generated images, we propose a hybrid parametrization for the denoiser network, which interpolates between the data-predicting parametrization and the noise-predicting parametrization for different noise scales. Moreover, we design an image quality loss as a complement to the score matching loss of diffusion models, further improving the consistency and quality of super-resolution. Extensive experiments on DIV2K, ImageNet, and CelebA demonstrate that our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods while having lower time consumption. Our code is available at https://github.com/Yuan-Yutao/ECDP.
Related papers
- A Wavelet Diffusion GAN for Image Super-Resolution [7.986370916847687]
Diffusion models have emerged as a superior alternative to generative adversarial networks (GANs) for high-fidelity image generation.
However, their real-time feasibility is hindered by slow training and inference speeds.
This study proposes a wavelet-based conditional Diffusion GAN scheme for Single-Image Super-Resolution.
arXiv Detail & Related papers (2024-10-23T15:34:06Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed.
We propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps.
Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual.
arXiv Detail & Related papers (2023-07-23T15:10:02Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution [82.50210340928173]
randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results.
We propose a plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods.
The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model.
arXiv Detail & Related papers (2023-05-24T17:09:54Z) - CDPMSR: Conditional Diffusion Probabilistic Models for Single Image
Super-Resolution [91.56337748920662]
Diffusion probabilistic models (DPM) have been widely adopted in image-to-image translation.
We propose a simple but non-trivial DPM-based super-resolution post-process framework,i.e., cDPMSR.
Our method surpasses prior attempts on both qualitative and quantitative results.
arXiv Detail & Related papers (2023-02-14T15:13:33Z) - Pyramidal Denoising Diffusion Probabilistic Models [43.9925721757248]
We present a novel pyramidal diffusion model to generate high resolution images using a single score function trained with a positional embedding.
This enables a time-efficient sampling for image generation, and also solves the low batch size problem when training with limited resources.
arXiv Detail & Related papers (2022-08-03T06:26:18Z) - Diverse super-resolution with pretrained deep hiererarchical VAEs [6.257821009472099]
We investigate the problem of producing diverse solutions to an image super-resolution problem.
We train a lightweight encoder to encode low-resolution images in the latent space of a pretrained HVAE.
At inference, we combine the low-resolution encoder and the pretrained generative model to super-resolve an image.
arXiv Detail & Related papers (2022-05-20T17:57:41Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.