Mixed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2404.10717v1
- Date: Tue, 16 Apr 2024 16:51:12 GMT
- Title: Mixed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation
- Authors: Lijian Li,
- Abstract summary: We propose the Mixed Prototype Consistency Learning (MPCL) framework, which includes a Mean Teacher and an auxiliary network.
The Mean Teacher generates prototypes for labeled and unlabeled data, while the auxiliary network produces additional prototypes for mixed data processed by CutMix.
High-quality global prototypes for each class are formed by fusing two enhanced prototypes, optimizing the distribution of hidden embeddings used in consistency learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, prototype learning has emerged in semi-supervised medical image segmentation and achieved remarkable performance. However, the scarcity of labeled data limits the expressiveness of prototypes in previous methods, potentially hindering the complete representation of prototypes for class embedding. To address this problem, we propose the Mixed Prototype Consistency Learning (MPCL) framework, which includes a Mean Teacher and an auxiliary network. The Mean Teacher generates prototypes for labeled and unlabeled data, while the auxiliary network produces additional prototypes for mixed data processed by CutMix. Through prototype fusion, mixed prototypes provide extra semantic information to both labeled and unlabeled prototypes. High-quality global prototypes for each class are formed by fusing two enhanced prototypes, optimizing the distribution of hidden embeddings used in consistency learning. Extensive experiments on the left atrium and type B aortic dissection datasets demonstrate MPCL's superiority over previous state-of-the-art approaches, confirming the effectiveness of our framework. The code will be released soon.
Related papers
- On Partial Prototype Collapse in the DINO Family of Self-Supervised Methods [15.524425102344784]
Learning to map the data samples to compact representations leads to the representation collapse problem.
Regularizing the distribution of data points over the clusters is the prevalent strategy to avoid this issue.
We show that a partial prototype collapse problem still exists in the DINO family of methods, that leads to significant redundancies in the prototypes.
arXiv Detail & Related papers (2024-10-17T22:06:34Z) - Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition [15.685927265270085]
We present a new generative paradigm to learn prototype distributions, termed as Mixture of Gaussian-distributed Prototypes (MGProto)
MGProto achieves state-of-the-art image recognition and OoD detection performances, while providing encouraging interpretability results.
arXiv Detail & Related papers (2023-11-30T11:01:37Z) - Unicom: Universal and Compact Representation Learning for Image
Retrieval [65.96296089560421]
We cluster the large-scale LAION400M into one million pseudo classes based on the joint textual and visual features extracted by the CLIP model.
To alleviate such conflict, we randomly select partial inter-class prototypes to construct the margin-based softmax loss.
Our method significantly outperforms state-of-the-art unsupervised and supervised image retrieval approaches on multiple benchmarks.
arXiv Detail & Related papers (2023-04-12T14:25:52Z) - Multimodal Prototype-Enhanced Network for Few-Shot Action Recognition [40.329190454146996]
MultimOdal PRototype-ENhanced Network (MORN) uses semantic information of label texts as multimodal information to enhance prototypes.
We conduct extensive experiments on four popular few-shot action recognition datasets.
arXiv Detail & Related papers (2022-12-09T14:24:39Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections.
We propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training.
We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.
arXiv Detail & Related papers (2022-08-01T16:34:33Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Prototype Completion for Few-Shot Learning [13.63424509914303]
Few-shot learning aims to recognize novel classes with few examples.
Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning.
We propose a novel prototype completion based meta-learning framework.
arXiv Detail & Related papers (2021-08-11T03:44:00Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
We propose a novel contrastive prototype learning with augmented embeddings (CPLAE) model.
With a class prototype as an anchor, CPL aims to pull the query samples of the same class closer and those of different classes further away.
Extensive experiments on several benchmarks demonstrate that our proposed CPLAE achieves new state-of-the-art.
arXiv Detail & Related papers (2021-01-23T13:22:44Z) - Learning Sparse Prototypes for Text Generation [120.38555855991562]
Prototype-driven text generation is inefficient at test time as a result of needing to store and index the entire training corpus.
We propose a novel generative model that automatically learns a sparse prototype support set that achieves strong language modeling performance.
In experiments, our model outperforms previous prototype-driven language models while achieving up to a 1000x memory reduction.
arXiv Detail & Related papers (2020-06-29T19:41:26Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.