Efficient Prototype Consistency Learning in Medical Image Segmentation via Joint Uncertainty and Data Augmentation
- URL: http://arxiv.org/abs/2505.16283v1
- Date: Thu, 22 May 2025 06:25:32 GMT
- Title: Efficient Prototype Consistency Learning in Medical Image Segmentation via Joint Uncertainty and Data Augmentation
- Authors: Lijian Li, Yuanpeng He, Chi-Man Pun,
- Abstract summary: Prototype learning has emerged in semi-supervised medical image segmentation.<n>We propose an efficient prototype consistency learning via joint uncertainty quantification and data augmentation.<n>Our framework is superior to previous state-of-the-art approaches.
- Score: 32.47805202531351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, prototype learning has emerged in semi-supervised medical image segmentation and achieved remarkable performance. However, the scarcity of labeled data limits the expressiveness of prototypes in previous methods, potentially hindering the complete representation of prototypes for class embedding. To overcome this issue, we propose an efficient prototype consistency learning via joint uncertainty quantification and data augmentation (EPCL-JUDA) to enhance the semantic expression of prototypes based on the framework of Mean-Teacher. The concatenation of original and augmented labeled data is fed into student network to generate expressive prototypes. Then, a joint uncertainty quantification method is devised to optimize pseudo-labels and generate reliable prototypes for original and augmented unlabeled data separately. High-quality global prototypes for each class are formed by fusing labeled and unlabeled prototypes, which are utilized to generate prototype-to-features to conduct consistency learning. Notably, a prototype network is proposed to reduce high memory requirements brought by the introduction of augmented data. Extensive experiments on Left Atrium, Pancreas-NIH, Type B Aortic Dissection datasets demonstrate EPCL-JUDA's superiority over previous state-of-the-art approaches, confirming the effectiveness of our framework. The code will be released soon.
Related papers
- Probabilistic Prototype Calibration of Vision-Language Models for Generalized Few-shot Semantic Segmentation [75.18058114915327]
Generalized Few-Shot Semanticnative (GFSS) aims to extend a segmentation model to novel classes with only a few annotated examples.<n>We propose FewCLIP, a probabilistic prototype calibration framework over multi-modal prototypes from the pretrained CLIP.<n>We show FewCLIP significantly outperforms state-of-the-art approaches across both GFSS and class-incremental setting.
arXiv Detail & Related papers (2025-06-28T18:36:22Z) - Prototype Contrastive Consistency Learning for Semi-Supervised Medical Image Segmentation [20.770556378026768]
Contrastive learning has proven to be effective for medical image segmentation in semi-supervised learning.<n>We propose a prototype contrastive learning method called Prototype Contrastive Consistency (PCCS) for semi-supervised medical image segmentation.<n>PCCS achieves better segmentation performance than the state-of-the-art methods.
arXiv Detail & Related papers (2025-02-10T16:40:26Z) - Mixed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation [0.0]
We propose the Mixed Prototype Consistency Learning (MPCL) framework, which includes a Mean Teacher and an auxiliary network.
The Mean Teacher generates prototypes for labeled and unlabeled data, while the auxiliary network produces additional prototypes for mixed data processed by CutMix.
High-quality global prototypes for each class are formed by fusing two enhanced prototypes, optimizing the distribution of hidden embeddings used in consistency learning.
arXiv Detail & Related papers (2024-04-16T16:51:12Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition [15.685927265270085]
We present a new generative paradigm to learn prototype distributions, termed as Mixture of Gaussian-distributed Prototypes (MGProto)<n>MGProto achieves state-of-the-art image recognition and OoD detection performances, while providing encouraging interpretability results.
arXiv Detail & Related papers (2023-11-30T11:01:37Z) - Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective [84.24742313520811]
Person Re-IDentification (Re-ID) as a retrieval task, has achieved tremendous development over the past decade.
We propose a new baseline ProNet, which innovatively reserves the function of the classifier at the inference stage.
Experiments on four benchmarks demonstrate that our proposed ProNet is simple yet effective, and significantly beats previous baselines.
arXiv Detail & Related papers (2023-08-21T13:38:10Z) - A Prototypical Semantic Decoupling Method via Joint Contrastive Learning
for Few-Shot Name Entity Recognition [24.916377682689955]
Few-shot named entity recognition (NER) aims at identifying named entities based on only few labeled instances.
We propose a Prototypical Semantic Decoupling method via joint Contrastive learning (PSDC) for few-shot NER.
Experimental results on two few-shot NER benchmarks demonstrate that PSDC consistently outperforms the previous SOTA methods in terms of overall performance.
arXiv Detail & Related papers (2023-02-27T09:20:00Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Prototype Completion for Few-Shot Learning [13.63424509914303]
Few-shot learning aims to recognize novel classes with few examples.
Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning.
We propose a novel prototype completion based meta-learning framework.
arXiv Detail & Related papers (2021-08-11T03:44:00Z) - Learning Sparse Prototypes for Text Generation [120.38555855991562]
Prototype-driven text generation is inefficient at test time as a result of needing to store and index the entire training corpus.
We propose a novel generative model that automatically learns a sparse prototype support set that achieves strong language modeling performance.
In experiments, our model outperforms previous prototype-driven language models while achieving up to a 1000x memory reduction.
arXiv Detail & Related papers (2020-06-29T19:41:26Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.