Hilbert space delocalization under random unitary circuits
- URL: http://arxiv.org/abs/2404.10725v1
- Date: Tue, 16 Apr 2024 16:59:41 GMT
- Title: Hilbert space delocalization under random unitary circuits
- Authors: Xhek Turkeshi, Piotr Sierant,
- Abstract summary: Unitary dynamics of a quantum system in a selected basis state yields, generically, a state that is a superposition of all the basis states.
This work analyzes the Hilbert space delocalization under dynamics of random quantum circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unitary dynamics of a quantum system initialized in a selected basis state yields, generically, a state that is a superposition of all the basis states. This process, associated with the quantum information scrambling and intimately tied to the resource theory of coherence, may be viewed as a gradual delocalization of the system's state in the Hilbert space. This work analyzes the Hilbert space delocalization under dynamics of random quantum circuits, which serve as a minimal model of chaotic dynamics of quantum many-body systems. We employ analytical methods based on the replica trick and Weingarten calculus to investigate the time evolution of the participation entropies which quantify the Hilbert space delocalization. We demonstrate that the participation entropies approach, up to a fixed accuracy, their long-time saturation value in times that scale logarithmically with the system size. Exact numerical simulations and tensor network techniques corroborate our findings.
Related papers
- Area laws and thermalization from classical entropies in a Bose-Einstein condensate [0.0]
Local quantum entropies are nonlinear functionals of the underlying quantum state.
We show that suitably chosen classical entropies capture the very same features as their quantum analogs.
arXiv Detail & Related papers (2024-04-18T16:53:03Z) - Exact Markovian Dynamics in Quantum Circuits [1.2845309023495566]
We show that the effect of the time-evolved global system on a finite subsystem can be analytically described by sequential, time-local quantum channels acting on the subsystem boundary.
The realization of exact Markovian property is facilitated by a solvable condition on the underlying two-site gates in the quantum circuit.
arXiv Detail & Related papers (2024-03-21T19:42:21Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum Mechanics for Closure of Dynamical Systems [0.6445605125467572]
We propose a scheme for data-driven parameterization of unresolved dimensions of dynamical systems.
Given a system in which some components of the state are unknown, this method involves defining a surrogate system.
We analyze the results of two different modalities of this methodology applied to the Lorenz 63 and Lorenz 96 multiscale systems.
arXiv Detail & Related papers (2022-08-05T21:18:44Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.