Quantum Mechanics for Closure of Dynamical Systems
- URL: http://arxiv.org/abs/2208.03390v1
- Date: Fri, 5 Aug 2022 21:18:44 GMT
- Title: Quantum Mechanics for Closure of Dynamical Systems
- Authors: David Freeman, Dimitrios Giannakis, Joanna Slawinska
- Abstract summary: We propose a scheme for data-driven parameterization of unresolved dimensions of dynamical systems.
Given a system in which some components of the state are unknown, this method involves defining a surrogate system.
We analyze the results of two different modalities of this methodology applied to the Lorenz 63 and Lorenz 96 multiscale systems.
- Score: 0.6445605125467572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a scheme for data-driven parameterization of unresolved dimensions
of dynamical systems based on the mathematical framework of quantum mechanics
and Koopman operator theory. Given a system in which some components of the
state are unknown, this method involves defining a surrogate system in a
time-dependent quantum state which determines the fluxes from the unresolved
degrees of freedom at each timestep. The quantum state is a density operator on
a finite-dimensional Hilbert space of classical observables and evolves over
time under an action induced by the Koopman operator. The quantum state also
updates with new values of the resolved variables according to a quantum Bayes'
law, implemented via an operator-valued feature map. Kernel methods are
utilized to learn data-driven basis functions and represent quantum states,
observables, and evolution operators as matrices. The resulting computational
schemes are automatically positivity-preserving, aiding in the physical
consistency of the parameterized system. We analyze the results of two
different modalities of this methodology applied to the Lorenz 63 and Lorenz 96
multiscale systems, and show how this approach preserves important statistical
and qualitative properties of the underlying chaotic systems.
Related papers
- Hilbert space delocalization under random unitary circuits [0.0]
Unitary dynamics of a quantum system in a selected basis state yields, generically, a state that is a superposition of all the basis states.
This work analyzes the Hilbert space delocalization under dynamics of random quantum circuits.
arXiv Detail & Related papers (2024-04-16T16:59:41Z) - Exact Markovian Dynamics in Quantum Circuits [1.2845309023495566]
We show that the effect of the time-evolved global system on a finite subsystem can be analytically described by sequential, time-local quantum channels acting on the subsystem boundary.
The realization of exact Markovian property is facilitated by a solvable condition on the underlying two-site gates in the quantum circuit.
arXiv Detail & Related papers (2024-03-21T19:42:21Z) - Decoherence time control by interconnection for finite-level quantum
memory systems [0.7252027234425334]
This paper is concerned with open quantum systems whose dynamic variables have an algebraic structure.
The Hamiltonian and the operators of coupling the system to the external bosonic fields depend linearly on the system variables.
We consider the decoherence time over the energy parameters of the system and obtain a condition under which the zero Hamiltonian provides a suboptimal solution.
arXiv Detail & Related papers (2023-11-04T01:21:55Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Moment dynamics and observer design for a class of quasilinear quantum
stochastic systems [2.0508733018954843]
This paper is concerned with a class of open quantum systems whose dynamic variables have an algebraic structure.
The system interacts with external bosonic fields, and its Hamiltonian and coupling operators depend linearly on the system variables.
The tractability of the moment dynamics is also used for mean square optimal Luenberger observer design in a measurement-based filtering problem for a quasilinear quantum plant.
arXiv Detail & Related papers (2020-12-15T11:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.