How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
- URL: http://arxiv.org/abs/2404.10727v2
- Date: Thu, 2 May 2024 08:39:57 GMT
- Title: How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
- Authors: Umberto Tomasini, Matthieu Wyart,
- Abstract summary: We show that by introducing sparsity to generative hierarchical models of data, the task acquires insensitivity to spatial transformations that are discrete versions of smooth transformations.
We quantify how the sample complexity of CNNs learning the SRHM depends on both the sparsity and hierarchical structure of the task.
- Score: 4.215221129670858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding what makes high-dimensional data learnable is a fundamental question in machine learning. On the one hand, it is believed that the success of deep learning lies in its ability to build a hierarchy of representations that become increasingly more abstract with depth, going from simple features like edges to more complex concepts. On the other hand, learning to be insensitive to invariances of the task, such as smooth transformations for image datasets, has been argued to be important for deep networks and it strongly correlates with their performance. In this work, we aim to explain this correlation and unify these two viewpoints. We show that by introducing sparsity to generative hierarchical models of data, the task acquires insensitivity to spatial transformations that are discrete versions of smooth transformations. In particular, we introduce the Sparse Random Hierarchy Model (SRHM), where we observe and rationalize that a hierarchical representation mirroring the hierarchical model is learnt precisely when such insensitivity is learnt, thereby explaining the strong correlation between the latter and performance. Moreover, we quantify how the sample complexity of CNNs learning the SRHM depends on both the sparsity and hierarchical structure of the task.
Related papers
- On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model [47.617093812158366]
We introduce the Random Hierarchy Model: a family of synthetic tasks inspired by the hierarchical structure of language and images.
We find that deep networks learn the task by developing internal representations invariant to exchanging equivalent groups.
Our results indicate how deep networks overcome the curse of dimensionality by building invariant representations.
arXiv Detail & Related papers (2023-07-05T09:11:09Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Learning sparse features can lead to overfitting in neural networks [9.2104922520782]
We show that feature learning can perform worse than lazy training.
Although sparsity is known to be essential for learning anisotropic data, it is detrimental when the target function is constant or smooth.
arXiv Detail & Related papers (2022-06-24T14:26:33Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Online Deep Learning based on Auto-Encoder [4.128388784932455]
We propose a two-phase Online Deep Learning based on Auto-Encoder (ODLAE)
Based on auto-encoder, considering reconstruction loss, we extract abstract hierarchical latent representations of instances.
We devise two fusion strategies: the output-level fusion strategy, which is obtained by fusing the classification results of each hidden layer; and feature-level fusion strategy, which is leveraged self-attention mechanism to fusion every hidden layer output.
arXiv Detail & Related papers (2022-01-19T02:14:57Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.