Quantum teleportation coexisting with classical communications in optical fiber
- URL: http://arxiv.org/abs/2404.10738v4
- Date: Sat, 26 Oct 2024 01:10:13 GMT
- Title: Quantum teleportation coexisting with classical communications in optical fiber
- Authors: Jordan M. Thomas, Fei I. Yeh, Jim Hao Chen, Joe J. Mambretti, Scott J. Kohlert, Gregory S. Kanter, Prem Kumar,
- Abstract summary: We report the first demonstration of quantum teleportation over fibers carrying conventional telecommunications traffic.
To protect quantum fidelity from spontaneous Raman scattering noise, we use optimal O-band quantum channels, narrow spectro-temporal filtering, and multi-photon coincidence detection.
Results show the feasibility of advanced quantum and classical network applications operating within a unified fiber infrastructure.
- Score: 2.7599674971366843
- License:
- Abstract: The ability for quantum and conventional networks to operate in the same optical fibers would aid the deployment of quantum network technology on a large scale. Quantum teleportation is a fundamental operation in quantum networking, but has yet to be demonstrated in fibers populated with high-power conventional optical signals. Here we report to the best of our knowledge the first demonstration of quantum teleportation over fibers carrying conventional telecommunications traffic. Quantum state transfer is achieved over a 30.2-km fiber carrying 400-Gbps C-band classical traffic with a Bell state measurement performed at the fiber's midpoint. To protect quantum fidelity from spontaneous Raman scattering noise, we use optimal O-band quantum channels, narrow spectro-temporal filtering, and multi-photon coincidence detection. Fidelity is shown to be well maintained with an elevated C-band launch power of 18.7 dBm for the single-channel 400-Gbps signal, which we project could support multiple classical channels totaling many terabits/s aggregate data rates. These results show the feasibility of advanced quantum and classical network applications operating within a unified fiber infrastructure.
Related papers
- Energy-time Entanglement Coexisting with Fiber Optical Communication at
Telecom C-band [11.687749207950633]
coexistence of quantum and classical light in the same fiber link is extremely desired in developing quantum communication.
We demonstrate the coexistence of energy-time entanglement based QKD and fiber optical communication at the telecom C-band.
arXiv Detail & Related papers (2023-05-30T02:41:06Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Designing Noise-Robust Quantum Networks Coexisting in the Classical
Fiber Infrastructure [0.0]
coexistence of multi-channel O-band quantum and C-band classical communications.
We characterize multiple narrowband entangled photon pair channels across 1282 nm-1318 nm co-propagating over 48 km installed standard fiber.
We analyze the Raman noise spectrum, optimal wavelength engineering, multi-photon pair emission in entangled photon-classical coexistence, and evaluate the implications for future quantum applications.
arXiv Detail & Related papers (2023-04-18T15:49:38Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Operating Fiber Networks in the Quantum Limit [0.0]
We show that a use of optimal quantum receivers allows an estimated $55%$ decrease in energy consumption of all-optical amplifiers in network configurations that are typical today.
We find that quantum receiver technology allows for a logarithmic scaling of the system capacity with the baud-rate, while Shannon-type systems are limited by the transmit power.
arXiv Detail & Related papers (2022-01-27T13:46:13Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Entangling single atoms over 33 km telecom fibre [2.527878267188811]
We present results demonstrating heralded entanglement between two independent, remote single-atom quantum memories generated over fibre links with a total length up to 33 km.
The presented work represents a milestone towards the realization of efficient quantum network links.
arXiv Detail & Related papers (2021-11-30T16:13:40Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Characterization and stability measurement of deployed multicore fibers
for quantum applications [50.591267188664666]
We characterize for the first time, in terms of phase stability, multiple strands of a 4-core multicore fiber installed underground in the city of L'Aquila.
We investigate the possibility of using such an infrastructure to implement quantum-enhanced schemes, such as high-dimensional quantum key distribution, quantum-based environmental sensors.
arXiv Detail & Related papers (2021-03-11T18:24:59Z) - Two-photon comb with wavelength conversion and 20-km distribution for
quantum communication [0.0]
In this study, we demonstrate a versatile entanglement source in the telecom band for fiber-based quantum internet.
After a total distribution length of 20-km in fiber, two-photon correlation is observed with an easily identifiable normalized correlation coefficient.
The presented implementation promises an efficient method for entanglement distribution that is compatible with quantum memory and frequency-multiplexed long-distance quantum communication applications.
arXiv Detail & Related papers (2020-10-12T03:56:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.