OER: Offline Experience Replay for Continual Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2305.13804v2
- Date: Sat, 20 Apr 2024 08:39:55 GMT
- Title: OER: Offline Experience Replay for Continual Offline Reinforcement Learning
- Authors: Sibo Gai, Donglin Wang, Li He,
- Abstract summary: Continuously learning new skills via a sequence of pre-collected offline datasets is desired for an agent.
In this paper, we formulate a new setting, continual offline reinforcement learning (CORL), where an agent learns a sequence of offline reinforcement learning tasks.
We propose a new model-based experience selection scheme to build the replay buffer, where a transition model is learned to approximate the state distribution.
- Score: 25.985985377992034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The capability of continuously learning new skills via a sequence of pre-collected offline datasets is desired for an agent. However, consecutively learning a sequence of offline tasks likely leads to the catastrophic forgetting issue under resource-limited scenarios. In this paper, we formulate a new setting, continual offline reinforcement learning (CORL), where an agent learns a sequence of offline reinforcement learning tasks and pursues good performance on all learned tasks with a small replay buffer without exploring any of the environments of all the sequential tasks. For consistently learning on all sequential tasks, an agent requires acquiring new knowledge and meanwhile preserving old knowledge in an offline manner. To this end, we introduced continual learning algorithms and experimentally found experience replay (ER) to be the most suitable algorithm for the CORL problem. However, we observe that introducing ER into CORL encounters a new distribution shift problem: the mismatch between the experiences in the replay buffer and trajectories from the learned policy. To address such an issue, we propose a new model-based experience selection (MBES) scheme to build the replay buffer, where a transition model is learned to approximate the state distribution. This model is used to bridge the distribution bias between the replay buffer and the learned model by filtering the data from offline data that most closely resembles the learned model for storage. Moreover, in order to enhance the ability on learning new tasks, we retrofit the experience replay method with a new dual behavior cloning (DBC) architecture to avoid the disturbance of behavior-cloning loss on the Q-learning process. In general, we call our algorithm offline experience replay (OER). Extensive experiments demonstrate that our OER method outperforms SOTA baselines in widely-used Mujoco environments.
Related papers
- Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal [54.93261535899478]
In real-world applications, such as robotic control of reinforcement learning, the tasks are changing, and new tasks arise in a sequential order.
This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge.
We propose a rehearsal-based continual diffusion model, called Continual diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability)
arXiv Detail & Related papers (2024-09-04T08:21:47Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
arXiv Detail & Related papers (2024-07-14T17:40:40Z) - Watch Your Step: Optimal Retrieval for Continual Learning at Scale [1.7265013728931]
In continual learning, a model learns incrementally over time while minimizing interference between old and new tasks.
One of the most widely used approaches in continual learning is referred to as replay.
We propose a framework for evaluating selective retrieval strategies, categorized by simple, independent class- and sample-selective primitives.
We propose a set of strategies to prevent duplicate replays and explore whether new samples with low loss values can be learned without replay.
arXiv Detail & Related papers (2024-04-16T17:35:35Z) - Layerwise Proximal Replay: A Proximal Point Method for Online Continual Learning [22.00843101957619]
In online continual learning, a neural network incrementally learns from a non-i.i.d. data stream.
Our work demonstrates a limitation of this approach: neural networks trained with experience replay tend to have unstable optimization trajectories.
We present Layerwise Proximal Replay (LPR), which balances learning from new and replay data while only allowing for gradual changes in the hidden activation of past data.
arXiv Detail & Related papers (2024-02-14T19:34:28Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - AdaER: An Adaptive Experience Replay Approach for Continual Lifelong
Learning [16.457330925212606]
We present adaptive-experience replay (AdaER) to address the challenge of continual lifelong learning.
AdaER consists of two stages: memory replay and memory update.
Results: AdaER outperforms existing continual lifelong learning baselines.
arXiv Detail & Related papers (2023-08-07T01:25:45Z) - Dealing with Cross-Task Class Discrimination in Online Continual
Learning [54.31411109376545]
This paper argues for another challenge in class-incremental learning (CIL)
How to establish decision boundaries between the classes of the new task and old tasks with no (or limited) access to the old task data.
A replay method saves a small amount of data (replay data) from previous tasks. When a batch of current task data arrives, the system jointly trains the new data and some sampled replay data.
This paper argues that the replay approach also has a dynamic training bias issue which reduces the effectiveness of the replay data in solving the CTCD problem.
arXiv Detail & Related papers (2023-05-24T02:52:30Z) - New Insights on Reducing Abrupt Representation Change in Online
Continual Learning [69.05515249097208]
We focus on the change in representations of observed data that arises when previously unobserved classes appear in the incoming data stream.
We show that applying Experience Replay causes the newly added classes' representations to overlap significantly with the previous classes.
We propose a new method which mitigates this issue by shielding the learned representations from drastic adaptation to accommodate new classes.
arXiv Detail & Related papers (2022-03-08T01:37:00Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
"Online" continual learning enables evaluating both information retention and online learning efficacy.
In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online.
We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts.
arXiv Detail & Related papers (2021-08-20T06:17:20Z) - Generative Feature Replay with Orthogonal Weight Modification for
Continual Learning [20.8966035274874]
generative replay is a promising strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting.
We propose to replay penultimate layer feature with a generative model; 2) leverage a self-supervised auxiliary task to further enhance the stability of feature.
Empirical results on several datasets show our method always achieves substantial improvement over powerful OWM.
arXiv Detail & Related papers (2020-05-07T13:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.