The Path To Autonomous Cyber Defense
- URL: http://arxiv.org/abs/2404.10788v1
- Date: Fri, 12 Apr 2024 19:51:45 GMT
- Title: The Path To Autonomous Cyber Defense
- Authors: Sean Oesch, Phillipe Austria, Amul Chaulagain, Brian Weber, Cory Watson, Matthew Dixson, Amir Sadovnik,
- Abstract summary: Defenders are overwhelmed by the number and scale of attacks against their networks.
We propose a path to autonomous cyber agents able to augment defenders by automating critical steps in the cyber defense life cycle.
- Score: 4.221619479687068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Defenders are overwhelmed by the number and scale of attacks against their networks.This problem will only be exacerbated as attackers leverage artificial intelligence to automate their workflows. We propose a path to autonomous cyber agents able to augment defenders by automating critical steps in the cyber defense life cycle.
Related papers
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
arXiv Detail & Related papers (2024-10-11T15:15:09Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
This paper delves into the escalating threat posed by the misuse of AI, specifically through the use of Large Language Models (LLMs)
Through a series of controlled experiments, the paper demonstrates how these models can be manipulated to bypass ethical and privacy safeguards to effectively generate cyber attacks.
We also introduce Occupy AI, a customized, finetuned LLM specifically engineered to automate and execute cyberattacks.
arXiv Detail & Related papers (2024-08-23T02:56:13Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Physical Backdoor Attack can Jeopardize Driving with Vision-Large-Language Models [53.701148276912406]
Vision-Large-Language-models (VLMs) have great application prospects in autonomous driving.
BadVLMDriver is the first backdoor attack against VLMs for autonomous driving that can be launched in practice using physical objects.
BadVLMDriver achieves a 92% attack success rate in inducing a sudden acceleration when coming across a pedestrian holding a red balloon.
arXiv Detail & Related papers (2024-04-19T14:40:38Z) - Automated Cyber Defence: A Review [0.0]
Research within Automated Cyber Defence will allow the development and enabling intelligence response by autonomously defending networked systems through sequential decision-making agents.
This article comprehensively elaborates the developments within Automated Cyber Defence through a requirement analysis divided into two sub-areas, namely, automated defence and attack agents and Autonomous Cyber Operation (ACO) Gyms.
The requirement analysis is also used to critique ACO Gyms with an overall aim to develop them for deploying automated agents within real-world networked systems.
arXiv Detail & Related papers (2023-03-08T22:37:50Z) - AI Security Threats against Pervasive Robotic Systems: A Course for Next
Generation Cybersecurity Workforce [0.9137554315375919]
Robotics, automation, and related Artificial Intelligence (AI) systems have become pervasive bringing in concerns related to security, safety, accuracy, and trust.
The security of these systems is becoming increasingly important to prevent cyber-attacks that could lead to privacy invasion, critical operations sabotage, and bodily harm.
This course description includes details about seven self-contained and adaptive modules on "AI security threats against pervasive robotic systems"
arXiv Detail & Related papers (2023-02-15T21:21:20Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.