Multi-Agent Actor-Critics in Autonomous Cyber Defense
- URL: http://arxiv.org/abs/2410.09134v1
- Date: Fri, 11 Oct 2024 15:15:09 GMT
- Title: Multi-Agent Actor-Critics in Autonomous Cyber Defense
- Authors: Mingjun Wang, Remington Dechene,
- Abstract summary: Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
- Score: 0.5261718469769447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need for autonomous and adaptive defense mechanisms has become paramount in the rapidly evolving landscape of cyber threats. Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations. This paper explores the application of Multi-Agent Actor-Critic algorithms which provides a general form in Multi-Agent learning to cyber defense, leveraging the collaborative interactions among multiple agents to detect, mitigate, and respond to cyber threats. We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios. The results indicate that MADRL can significantly enhance the capability of autonomous cyber defense systems, paving the way for more intelligent cybersecurity strategies. This study contributes to the growing body of knowledge on leveraging artificial intelligence for cybersecurity and sheds light for future research and development in autonomous cyber operations.
Related papers
- Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - BreachSeek: A Multi-Agent Automated Penetration Tester [0.0]
BreachSeek is an AI-driven multi-agent software platform that identifies and exploits vulnerabilities without human intervention.
In preliminary evaluations, BreachSeek successfully exploited vulnerabilities in exploitable machines within local networks.
Future developments aim to expand its capabilities, positioning it as an indispensable tool for cybersecurity professionals.
arXiv Detail & Related papers (2024-08-31T19:15:38Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
This paper delves into the escalating threat posed by the misuse of AI, specifically through the use of Large Language Models (LLMs)
Through a series of controlled experiments, the paper demonstrates how these models can be manipulated to bypass ethical and privacy safeguards to effectively generate cyber attacks.
We also introduce Occupy AI, a customized, finetuned LLM specifically engineered to automate and execute cyberattacks.
arXiv Detail & Related papers (2024-08-23T02:56:13Z) - Learning Cyber Defence Tactics from Scratch with Multi-Agent
Reinforcement Learning [4.796742432333795]
Team of intelligent agents in computer network defence roles may reveal promising avenues to safeguard cyber and kinetic assets.
Agents are evaluated on their ability to jointly mitigate attacker activity in host-based defence scenarios.
arXiv Detail & Related papers (2023-08-25T14:07:50Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Review: Deep Learning Methods for Cybersecurity and Intrusion Detection
Systems [6.459380657702644]
Artificial Intelligence (AI) and Machine Learning (ML) can be leveraged as key enabling technologies for cyber-defense.
In this paper, we are concerned with the investigation of the various deep learning techniques employed for network intrusion detection.
arXiv Detail & Related papers (2020-12-04T23:09:35Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.