Dynamic Self-adaptive Multiscale Distillation from Pre-trained Multimodal Large Model for Efficient Cross-modal Representation Learning
- URL: http://arxiv.org/abs/2404.10838v1
- Date: Tue, 16 Apr 2024 18:22:49 GMT
- Title: Dynamic Self-adaptive Multiscale Distillation from Pre-trained Multimodal Large Model for Efficient Cross-modal Representation Learning
- Authors: Zhengyang Liang, Meiyu Liang, Wei Huang, Yawen Li, Zhe Xue,
- Abstract summary: We propose a novel dynamic self-adaptive multiscale distillation from pre-trained multimodal large model.
Our strategy employs a multiscale perspective, enabling the extraction structural knowledge across from the pre-trained multimodal large model.
Our methodology streamlines pre-trained multimodal large models using only their output features and original image-level information.
- Score: 12.00246872965739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, pre-trained multimodal large models have attracted widespread attention due to their outstanding performance in various multimodal applications. Nonetheless, the extensive computational resources and vast datasets required for their training present significant hurdles for deployment in environments with limited computational resources. To address this challenge, we propose a novel dynamic self-adaptive multiscale distillation from pre-trained multimodal large model for efficient cross-modal representation learning for the first time. Unlike existing distillation methods, our strategy employs a multiscale perspective, enabling the extraction structural knowledge across from the pre-trained multimodal large model. Ensuring that the student model inherits a comprehensive and nuanced understanding of the teacher knowledge. To optimize each distillation loss in a balanced and efficient manner, we propose a dynamic self-adaptive distillation loss balancer, a novel component eliminating the need for manual loss weight adjustments and dynamically balances each loss item during the distillation process. Our methodology streamlines pre-trained multimodal large models using only their output features and original image-level information, requiring minimal computational resources. This efficient approach is suited for various applications and allows the deployment of advanced multimodal technologies even in resource-limited settings. Extensive experiments has demonstrated that our method maintains high performance while significantly reducing model complexity and training costs. Moreover, our distilled student model utilizes only image-level information to achieve state-of-the-art performance on cross-modal retrieval tasks, surpassing previous methods that relied on region-level information.
Related papers
- Modality-Balanced Learning for Multimedia Recommendation [21.772064939915214]
We propose a Counterfactual Knowledge Distillation method to solve the imbalance problem and make the best use of all modalities.
We also design a novel generic-and-specific distillation loss to guide the multimodal student to learn wider-and-deeper knowledge from teachers.
Our method could serve as a plug-and-play module for both late-fusion and early-fusion backbones.
arXiv Detail & Related papers (2024-07-26T07:53:01Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
This paper investigates how to better leverage large-scale pre-trained uni-modal models to enhance discriminative multi-modal learning.
We introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA)
arXiv Detail & Related papers (2023-10-08T15:01:54Z) - VideoAdviser: Video Knowledge Distillation for Multimodal Transfer
Learning [6.379202839994046]
Multimodal transfer learning aims to transform pretrained representations of diverse modalities into a common domain space for effective multimodal fusion.
We propose VideoAdviser, a video knowledge distillation method to transfer multimodal knowledge of video-enhanced prompts from a multimodal fundamental model to a specific modal fundamental model.
We evaluate our method in two challenging multimodal tasks: video-level sentiment analysis and audio-visual retrieval.
arXiv Detail & Related papers (2023-09-27T08:44:04Z) - One-stop Training of Multiple Capacity Models [74.87789190840527]
We propose a novel one-stop training framework to jointly train high-capacity and low-capactiy models.
Unlike knowledge distillation, where multiple capacity models are trained from scratch separately, our approach integrates supervisions from different capacity models simultaneously.
arXiv Detail & Related papers (2023-05-23T13:44:09Z) - Distilled Mid-Fusion Transformer Networks for Multi-Modal Human Activity
Recognition [34.424960016807795]
Multi-modal Human Activity Recognition could utilize the complementary information to build models that can generalize well.
Deep learning methods have shown promising results, their potential in extracting salient multi-modal spatial-temporal features has not been fully explored.
A knowledge distillation-based Multi-modal Mid-Fusion approach, DMFT, is proposed to conduct informative feature extraction and fusion to resolve the Multi-modal Human Activity Recognition task efficiently.
arXiv Detail & Related papers (2023-05-05T19:26:06Z) - Efficient Multimodal Fusion via Interactive Prompting [62.08292938484994]
Large-scale pre-training has brought unimodal fields such as computer vision and natural language processing to a new era.
We propose an efficient and flexible multimodal fusion method, namely PMF, tailored for fusing unimodally pre-trained transformers.
arXiv Detail & Related papers (2023-04-13T07:31:51Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.