Classical Models of Entanglement in Monitored Random Circuits
- URL: http://arxiv.org/abs/2004.06736v1
- Date: Tue, 14 Apr 2020 18:00:14 GMT
- Title: Classical Models of Entanglement in Monitored Random Circuits
- Authors: Oles Shtanko, Yaroslav A. Kharkov, Luis Pedro Garc\'ia-Pintos, Alexey
V. Gorshkov
- Abstract summary: We show the evolution of entanglement entropy in quantum circuits composed of Haar-random gates and projective measurements.
We also establish a Markov model for the evolution of the zeroth R'enyi entropy and demonstrate that, in one dimension and in the limit of large local dimension, it coincides with the corresponding second-R'enyi-entropy model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of entanglement entropy in quantum circuits composed of
Haar-random gates and projective measurements shows versatile behavior, with
connections to phase transitions and complexity theory. We reformulate the
problem in terms of a classical Markov process for the dynamics of bipartition
purities and establish a probabilistic cellular-automaton algorithm to compute
entanglement entropy in monitored random circuits on arbitrary graphs. In one
dimension, we further relate the evolution of the entropy to a simple classical
spin model that naturally generalizes a two-dimensional lattice percolation
problem. We also establish a Markov model for the evolution of the zeroth
R\'{e}nyi entropy and demonstrate that, in one dimension and in the limit of
large local dimension, it coincides with the corresponding
second-R\'{e}nyi-entropy model. Finally, we extend the Markovian description to
a more general setting that incorporates continuous-time dynamics, defined by
stochastic Hamiltonians and weak local measurements continuously monitoring the
system.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Tensor product random matrix theory [39.58317527488534]
We introduce a real-time field theory approach to the evolution of correlated quantum systems.
We describe the full range of such crossover dynamics, from initial product states to a maximum entropy ergodic state.
arXiv Detail & Related papers (2024-04-16T21:40:57Z) - Entanglement entropy of higher rank topological phases [0.0]
We study entanglement entropy of unusual $mathbbZ_N$ topological stabilizer codes which admit fractional excitations with restricted mobility constraint.
It is widely known that the sub-leading term of the entanglement entropy of a disk geometry in conventional topologically ordered phases is related to the total number of the quantum dimension of the fractional excitations.
arXiv Detail & Related papers (2023-02-22T16:06:01Z) - Page curves and typical entanglement in linear optics [0.0]
We study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary.
We prove various results on the typicality of entanglement as measured by the R'enyi-2 entropy.
Our main make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Measurement-Induced Entanglement Phase Transition in Random Bilocal
Circuits [0.0]
We study the dynamics of averaged purity for a simple $N$-qudit Brownian circuit model with all-to-all random interaction and measurements.
We show that there are two phases distinguished by the behavior of the total system entropy in the long time.
arXiv Detail & Related papers (2022-01-30T02:07:46Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.