Stepwise Alignment for Constrained Language Model Policy Optimization
- URL: http://arxiv.org/abs/2404.11049v3
- Date: Mon, 21 Oct 2024 00:42:51 GMT
- Title: Stepwise Alignment for Constrained Language Model Policy Optimization
- Authors: Akifumi Wachi, Thien Q. Tran, Rei Sato, Takumi Tanabe, Youhei Akimoto,
- Abstract summary: Safety and trustworthiness are indispensable requirements for real-world applications of AI systems using large language models (LLMs)
This paper formulates human value alignment as an optimization problem of the language model policy to maximize reward under a safety constraint.
One key idea behind SACPO, supported by theory, is that the optimal policy incorporating reward and safety can be directly obtained from a reward-aligned policy.
- Score: 12.986006070964772
- License:
- Abstract: Safety and trustworthiness are indispensable requirements for real-world applications of AI systems using large language models (LLMs). This paper formulates human value alignment as an optimization problem of the language model policy to maximize reward under a safety constraint, and then proposes an algorithm, Stepwise Alignment for Constrained Policy Optimization (SACPO). One key idea behind SACPO, supported by theory, is that the optimal policy incorporating reward and safety can be directly obtained from a reward-aligned policy. Building on this key idea, SACPO aligns LLMs step-wise with each metric while leveraging simple yet powerful alignment algorithms such as direct preference optimization (DPO). SACPO offers several advantages, including simplicity, stability, computational efficiency, and flexibility of algorithms and datasets. Under mild assumptions, our theoretical analysis provides the upper bounds on optimality and safety constraint violation. Our experimental results show that SACPO can fine-tune Alpaca-7B better than the state-of-the-art method in terms of both helpfulness and harmlessness.
Related papers
- e-COP : Episodic Constrained Optimization of Policies [12.854752753529151]
We present the first policy optimization algorithm for constrained Reinforcement Learning (RL) in episodic (finite horizon) settings.
We show that our algorithm has similar or better performance than SoTA (non-episodic) algorithms adapted for the episodic setting.
arXiv Detail & Related papers (2024-06-13T20:12:09Z) - One-Shot Safety Alignment for Large Language Models via Optimal Dualization [64.52223677468861]
This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem.
We do so by pre-optimizing a smooth and convex dual function that has a closed form.
Our strategy leads to two practical algorithms in model-based and preference-based settings.
arXiv Detail & Related papers (2024-05-29T22:12:52Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Optimistic Natural Policy Gradient: a Simple Efficient Policy
Optimization Framework for Online RL [23.957148537567146]
This paper proposes a simple efficient policy optimization framework -- Optimistic NPG for online RL.
For $d$-dimensional linear MDPs, Optimistic NPG is computationally efficient, and learns an $varepsilon$-optimal policy within $tildeO(d2/varepsilon3)$ samples.
arXiv Detail & Related papers (2023-05-18T15:19:26Z) - Soft Actor-Critic with Cross-Entropy Policy Optimization [0.45687771576879593]
We propose Soft Actor-Critic with Cross-Entropy Policy Optimization (SAC-CEPO)
SAC-CEPO uses Cross-Entropy Method (CEM) to optimize the policy network of SAC.
We show that SAC-CEPO achieves competitive performance against the original SAC.
arXiv Detail & Related papers (2021-12-21T11:38:12Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
We show that the preferability of optimization methods depends critically on whether exact gradients are used.
Second, to explain these findings we introduce the concept of committal rate for policy optimization.
Third, we show that in the absence of external oracle information, there is an inherent trade-off between exploiting geometry to accelerate convergence versus achieving optimality almost surely.
arXiv Detail & Related papers (2021-10-29T06:35:44Z) - Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO [6.33198867705718]
Policy optimization is a fundamental principle for designing reinforcement learning algorithms.
Despite its superior empirical performance, PPO-clip has not been justified via theoretical proof up to date.
This is the first ever that can prove global convergence to an optimal policy for a variant of PPO-clip.
arXiv Detail & Related papers (2021-10-26T15:56:57Z) - On the Optimality of Batch Policy Optimization Algorithms [106.89498352537682]
Batch policy optimization considers leveraging existing data for policy construction before interacting with an environment.
We show that any confidence-adjusted index algorithm is minimax optimal, whether it be optimistic, pessimistic or neutral.
We introduce a new weighted-minimax criterion that considers the inherent difficulty of optimal value prediction.
arXiv Detail & Related papers (2021-04-06T05:23:20Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.