論文の概要: WPS-Dataset: A benchmark for wood plate segmentation in bark removal processing
- arxiv url: http://arxiv.org/abs/2404.11051v2
- Date: Fri, 26 Apr 2024 00:21:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 17:08:44.665055
- Title: WPS-Dataset: A benchmark for wood plate segmentation in bark removal processing
- Title(参考訳): WPSデータセット:樹皮除去処理における木材板のセグメンテーションのベンチマーク
- Authors: Rijun Wang, Guanghao Zhang, Fulong Liang, Bo Wang, Xiangwei Mou, Yesheng Chen, Peng Sun, Canjin Wang,
- Abstract要約: 本研究では,WPSデータセットと呼ばれる樹皮除去処理における木材板のセグメンテーションのベンチマークを提案する。
我々は、画像取得装置を設計し、それを樹皮除去装置に組み込んで、実際の産業環境で画像をキャプチャした。
モデルはトレーニング中にWPSデータセットの特徴を効果的に学習し理解し、木材板分割作業において高い性能と精度をもたらす。
- 参考スコア(独自算出の注目度): 4.266195144658595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using deep learning methods is a promising approach to improving bark removal efficiency and enhancing the quality of wood products. However, the lack of publicly available datasets for wood plate segmentation in bark removal processing poses challenges for researchers in this field. To address this issue, a benchmark for wood plate segmentation in bark removal processing named WPS-dataset is proposed in this study, which consists of 4863 images. We designed an image acquisition device and assembled it on a bark removal equipment to capture images in real industrial settings. We evaluated the WPS-dataset using six typical segmentation models. The models effectively learn and understand the WPS-dataset characteristics during training, resulting in high performance and accuracy in wood plate segmentation tasks. We believe that our dataset can lay a solid foundation for future research in bark removal processing and contribute to advancements in this field.
- Abstract(参考訳): 深層学習は樹皮除去効率の向上と木材製品の品質向上に有望なアプローチである。
しかし、樹皮除去処理における木板セグメンテーションのための公開データセットの欠如は、この分野の研究者にとって課題となっている。
この問題に対処するために,4863枚の画像からなるWPSデータセットという樹皮除去処理における木材板のセグメンテーションのベンチマークを提案する。
我々は、画像取得装置を設計し、それを樹皮除去装置に組み込んで、実際の産業環境で画像をキャプチャした。
WPSデータセットを6つの典型的なセグメンテーションモデルを用いて評価した。
モデルはトレーニング中にWPSデータセットの特徴を効果的に学習し理解し、木材板分割作業において高い性能と精度をもたらす。
我々のデータセットは、樹皮除去処理における将来の研究の確かな基盤を築き、この分野の進歩に貢献できると信じている。
関連論文リスト
- Deep Learning methodology for the identification of wood species using high-resolution macroscopic images [6.510691480587631]
本研究は,木材の高分解能マクロ画像による木材種の同定の自動化に寄与する。
本稿では,TDLI-PIV を省略した Patch-based Inference Voting Method を用いたTimber Deep Learning Identificationを提案する。
このデータセットには2120枚の木材の画像が含まれており、37種の木を法的に保護している。
論文 参考訳(メタデータ) (2024-06-17T17:31:57Z) - HYPE: Hyperbolic Entailment Filtering for Underspecified Images and Texts [49.21764163995419]
本稿では,HyPerbolic Entailment Filtering (HYPE)を導入し,ノイズの多い画像とテキストのペアのデータセットから有意で整合したデータを抽出する。
HYPEは、フィルタリング効率を大幅に改善するだけでなく、DataCompベンチマークで新しい最先端を設定できる。
このブレークスルーは、HYPEがデータ選択プロセスを洗練させる可能性を示し、より正確で効率的な自己教師型学習モデルの開発に寄与する。
論文 参考訳(メタデータ) (2024-04-26T16:19:55Z) - Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation [18.598405597933752]
自己監督(Self-supervision)は、人造地理空間アノテーションの正確な量を減らすためのリモートセンシングツールを提供する。
本研究では,モデル事前学習のためのノイズの多いセマンティックセグメンテーションマップを提案する。
2つのデータセットから,ノイズラベルを用いたタスク固有教師付き事前学習の有効性が示唆された。
論文 参考訳(メタデータ) (2024-02-25T18:01:42Z) - Segmentation Framework for Heat Loss Identification in Thermal Images:
Empowering Scottish Retrofitting and Thermographic Survey Companies [3.663784777941382]
本研究では,Mask領域提案畳み込みニューラルネットワーク(Mask RCNN)を用いたディープラーニング(DL)に基づくセグメンテーションフレームワークを提案する。
本フレームワークの目的は, 弱い断熱によって引き起こされる熱損失源を同定し, かつ, それらの画像に存在する閉塞物を除去することである。
論文 参考訳(メタデータ) (2023-08-07T14:36:49Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - Towards On-Board Panoptic Segmentation of Multispectral Satellite Images [41.34294145237618]
マルチスペクトル衛星画像の単眼分割のための軽量パイプラインを提案する。
パノプティカル・セグメンテーションは、農地からの収量推定から複雑な軍事用途のための知性まで、主要な経済・環境の洞察を提供する。
本評価は,既存の最先端モデルと比較して精度が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-04-05T03:10:39Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data [0.0]
本稿では,画像分類のための高性能な教師なし機械学習システムの構築,利用,評価について述べる。
我々は、自然画像のImageNetデータセット上に事前訓練されたVGG16畳み込みニューラルネットワークを用いて、各マイクログラフの特徴表現を抽出する。
このアプローチは、99.4% pm 0.16%$の精度を実現し、結果として得られたモデルは、再トレーニングせずに、新しい画像の分類に使うことができる。
論文 参考訳(メタデータ) (2020-07-16T14:36:04Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
ImageNet作成プロセスにおける特定の設計選択が、結果のデータセットの忠実性に与える影響について検討する。
私たちの分析では、ノイズの多いデータ収集パイプラインが、結果のベンチマークと、それがプロキシとして機能する実世界のタスクとの間に、体系的なミスアライメントをもたらす可能性があることを指摘しています。
論文 参考訳(メタデータ) (2020-05-22T17:39:16Z) - Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection [86.0580214485104]
本稿では,オブジェクト検出のための汎用的で効率的な事前学習パラダイムであるMontage事前学習を提案する。
Montage事前トレーニングは、ターゲット検出データセットのみを必要とするが、広く採用されているImageNet事前トレーニングと比較して、計算リソースは1/4しかない。
モンタージュ事前学習の効率と有効性は、MS-COCOデータセットの広範な実験によって検証される。
論文 参考訳(メタデータ) (2020-04-25T16:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。