論文の概要: Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data
- arxiv url: http://arxiv.org/abs/2007.08361v1
- Date: Thu, 16 Jul 2020 14:36:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 00:17:31.048906
- Title: Unsupervised machine learning via transfer learning and k-means
clustering to classify materials image data
- Title(参考訳): 転送学習とk-meansクラスタリングによる教師なし機械学習による材料画像データの分類
- Authors: Ryan Cohn (1) and Elizabeth Holm (1) ((1) Department of Materials
Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA)
- Abstract要約: 本稿では,画像分類のための高性能な教師なし機械学習システムの構築,利用,評価について述べる。
我々は、自然画像のImageNetデータセット上に事前訓練されたVGG16畳み込みニューラルネットワークを用いて、各マイクログラフの特徴表現を抽出する。
このアプローチは、99.4% pm 0.16%$の精度を実現し、結果として得られたモデルは、再トレーニングせずに、新しい画像の分類に使うことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised machine learning offers significant opportunities for extracting
knowledge from unlabeled data sets and for achieving maximum machine learning
performance. This paper demonstrates how to construct, use, and evaluate a high
performance unsupervised machine learning system for classifying images in a
popular microstructural dataset. The Northeastern University Steel Surface
Defects Database includes micrographs of six different defects observed on
hot-rolled steel in a format that is convenient for training and evaluating
models for image classification. We use the VGG16 convolutional neural network
pre-trained on the ImageNet dataset of natural images to extract feature
representations for each micrograph. After applying principal component
analysis to extract signal from the feature descriptors, we use k-means
clustering to classify the images without needing labeled training data. The
approach achieves $99.4\% \pm 0.16\%$ accuracy, and the resulting model can be
used to classify new images without retraining This approach demonstrates an
improvement in both performance and utility compared to a previous study. A
sensitivity analysis is conducted to better understand the influence of each
step on the classification performance. The results provide insight toward
applying unsupervised machine learning techniques to problems of interest in
materials science.
- Abstract(参考訳): 教師なし機械学習は、ラベルなしデータセットから知識を抽出し、最大機械学習性能を達成するための重要な機会を提供する。
本稿では,人気のマイクロ構造データセットにおける画像分類のための高速教師なし機械学習システムの構築,使用,評価について述べる。
東北大学スチール表面欠陥データベースには、熱間圧延鋼で観察された6種類の欠陥のマイクログラフが含まれており、画像分類のためのモデルの訓練と評価に便利である。
自然画像のimagenetデータセット上で事前トレーニングされたvgg16畳み込みニューラルネットワークを用いて,各マイクログラフの特徴表現を抽出する。
特徴記述子から信号を抽出するために主成分分析を適用した後、k平均クラスタリングを用いてラベル付きトレーニングデータを必要としない画像分類を行う。
このアプローチは99.4\% \pm 0.16\%$精度を達成し、結果として得られたモデルは、以前の研究よりもパフォーマンスと有用性が向上することを示すことなく、新しいイメージの分類に使用できる。
分類性能に対する各ステップの影響をよりよく理解するために感度解析を行う。
その結果, 教材科学に関心のある問題に対する教師なし機械学習技術の適用に向けた洞察が得られた。
関連論文リスト
- Mitigating Bias Using Model-Agnostic Data Attribution [2.9868610316099335]
機械学習モデルにおけるバイアスの緩和は、公平性と公平性を保証するための重要な取り組みである。
本稿では, 画素画像の属性を利用して, バイアス属性を含む画像の領域を特定し, 正規化することで, バイアスに対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-08T13:00:56Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - Prefix Conditioning Unifies Language and Label Supervision [84.11127588805138]
学習した表現の一般化性を低減することにより,データセットのバイアスが事前学習に悪影響を及ぼすことを示す。
実験では、この単純な手法により、ゼロショット画像認識精度が向上し、画像レベルの分布シフトに対するロバスト性が向上することを示した。
論文 参考訳(メタデータ) (2022-06-02T16:12:26Z) - Graph-based Active Learning for Semi-supervised Classification of SAR
Data [8.92985438874948]
本稿では,グラフベース学習法とニューラルネットワーク法を組み合わせた合成開口レーダ(SAR)データの分類手法を提案する。
CNNVAEの機能埋め込みとグラフ構築はラベル付きデータを必要としないため、オーバーフィッティングが軽減される。
この方法は、データラベリングプロセスにおいて、アクティブラーニングのためのヒューマン・イン・ザ・ループを容易に組み込む。
論文 参考訳(メタデータ) (2022-03-31T00:14:06Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
我々は,対象地域を排除し,事前訓練の手順を改善する,新たな自己指導型アプローチを開発した。
予測モデルに対してエージェントを訓練することで、下流の分類タスクで抽出した意味的特徴を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:05:06Z) - Digital Fingerprinting of Microstructures [44.139970905896504]
微細な情報をフィンガープリントする効率的な方法を見つけることは、データ中心の機械学習アプローチを活用するための重要なステップである。
本稿では,マイクロ構造を分類し,その特徴を機械学習タスクに応用する。
特に、ImageNetデータセットで事前訓練された畳み込みニューラルネットワーク(CNN)によるトランスファーラーニングを利用するメソッドは、他の方法よりも優れていることが一般的に示されている。
論文 参考訳(メタデータ) (2022-03-25T15:40:44Z) - Exploiting the relationship between visual and textual features in
social networks for image classification with zero-shot deep learning [0.0]
本稿では,CLIPニューラルネットワークアーキテクチャの伝達可能な学習能力に基づく分類器アンサンブルを提案する。
本研究は,Placesデータセットのラベルによる画像分類タスクに基づいて,視覚的部分のみを考慮した実験である。
画像に関連付けられたテキストを考えることは、目標に応じて精度を向上させるのに役立つ。
論文 参考訳(メタデータ) (2021-07-08T10:54:59Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
ImageNet作成プロセスにおける特定の設計選択が、結果のデータセットの忠実性に与える影響について検討する。
私たちの分析では、ノイズの多いデータ収集パイプラインが、結果のベンチマークと、それがプロキシとして機能する実世界のタスクとの間に、体系的なミスアライメントをもたらす可能性があることを指摘しています。
論文 参考訳(メタデータ) (2020-05-22T17:39:16Z) - Extracting dispersion curves from ambient noise correlations using deep
learning [1.0237120900821557]
本研究では,表面波の分散曲線の位相を分類する機械学習手法を提案する。
受信機のアレイで観測された表面の標準FTAN解析を画像に変換する。
我々は、教師付き学習目標を備えた畳み込みニューラルネットワーク(U-net)アーキテクチャを使用し、伝達学習を取り入れる。
論文 参考訳(メタデータ) (2020-02-05T23:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。