Accuracy guarantees and quantum advantage in analogue open quantum simulation with and without noise
- URL: http://arxiv.org/abs/2404.11081v1
- Date: Wed, 17 Apr 2024 05:40:08 GMT
- Title: Accuracy guarantees and quantum advantage in analogue open quantum simulation with and without noise
- Authors: Vikram Kashyap, Georgios Styliaris, Sara Mouradian, Juan Ignacio Cirac, Rahul Trivedi,
- Abstract summary: We theoretically analyze noisy analogue quantum simulation of geometrically local open quantum systems.
We show that the dynamics of local observables can be obtained to a precision of $varepsilon$ in time that is $textpoly(varepsilon-1)$ and uniform in system size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many-body open quantum systems, described by Lindbladian master equations, are a rich class of physical models that display complex equilibrium and out-of-equilibrium phenomena which remain to be understood. In this paper, we theoretically analyze noisy analogue quantum simulation of geometrically local open quantum systems and provide evidence that this problem is both hard to simulate on classical computers and could be approximately solved on near-term quantum devices. First, given a noiseless quantum simulator, we show that the dynamics of local observables and the fixed-point expectation values of rapidly-mixing local observables in geometrically local Lindbladians can be obtained to a precision of $\varepsilon$ in time that is $\text{poly}(\varepsilon^{-1})$ and uniform in system size. Furthermore, we establish that the quantum simulator would provide an exponential advantage, in run-time scaling with respect to the target precision and either the evolution time (when simulating dynamics) or the Lindbladian's decay rate (when simulating fixed-points) over any classical algorithm for these problems unless BQP = BPP. We then consider the presence of noise in the quantum simulator in the form of additional geometrically-local Linbdladian terms. We show that the simulation tasks considered in this paper are stable to errors, i.e. they can be solved to a noise-limited, but system-size independent, precision. Finally, we establish that there are stable geometrically local Lindbladian simulation problems such that as the noise rate on the simulator is reduced, classical algorithms must take time exponentially longer in the inverse noise rate to attain the same precision unless BQP = BPP.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Stochastic Error Cancellation in Analog Quantum Simulation [0.6410191755165466]
We consider an error model in which the actual Hamiltonian of the simulator differs from the target Hamiltonian.
We show that, due to error cancellation, the error scales as the square root of the number of qubits instead of linearly.
We also show that error cancellation also manifests in the fidelity between the target state at the end of time-evolution and the actual state we obtain in the presence of noise.
arXiv Detail & Related papers (2023-11-24T19:25:08Z) - Large-scale simulations of Floquet physics on near-term quantum
computers [0.6332429219530602]
We introduce the Quantum High Frequency Floquet Simulation (QHiFFS) algorithm as a method for simulating the dynamics of fast-driven Floquet systems on quantum hardware.
Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian.
arXiv Detail & Related papers (2023-03-03T20:45:01Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Simulation and performance analysis of quantum error correction with a
rotated surface code under a realistic noise model [0.6946929968559495]
Demonstration of quantum error correction (QEC) is one of the most important milestones in the realization of fully-fledged quantum computers.
In this work, we performed a full simulation of QEC for the rotated surface codes with a code distance 5, which employs 49 qubits.
We evaluate the logical error probability in a realistic noise model that incorporates not only Pauli errors but also coherent errors due to a systematic control error or unintended interactions.
arXiv Detail & Related papers (2022-04-25T02:45:06Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Benchmarking a novel efficient numerical method for localized 1D
Fermi-Hubbard systems on a quantum simulator [0.0]
We show that a quantum simulator can be used to in-effect solve for the dynamics of a many-body system.
We use a neutral-atom Fermi-Hubbard quantum simulator with $L_textexpsimeq290$ lattice sites to benchmark its performance.
We derive a simple prediction of the behaviour of interacting Bloch oscillations for spin-imbalanced Fermi-Hubbard systems.
arXiv Detail & Related papers (2021-05-13T16:03:11Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.