Stochastic Error Cancellation in Analog Quantum Simulation
- URL: http://arxiv.org/abs/2311.14818v2
- Date: Fri, 18 Oct 2024 20:29:55 GMT
- Title: Stochastic Error Cancellation in Analog Quantum Simulation
- Authors: Yiyi Cai, Yu Tong, John Preskill,
- Abstract summary: We consider an error model in which the actual Hamiltonian of the simulator differs from the target Hamiltonian.
We show that, due to error cancellation, the error scales as the square root of the number of qubits instead of linearly.
We also show that error cancellation also manifests in the fidelity between the target state at the end of time-evolution and the actual state we obtain in the presence of noise.
- Score: 0.6410191755165466
- License:
- Abstract: Analog quantum simulation is a promising path towards solving classically intractable problems in many-body physics on near-term quantum devices. However, the presence of noise limits the size of the system and the length of time that can be simulated. In our work, we consider an error model in which the actual Hamiltonian of the simulator differs from the target Hamiltonian we want to simulate by small local perturbations, which are assumed to be random and unbiased. We analyze the error accumulated in observables in this setting and show that, due to stochastic error cancellation, with high probability the error scales as the square root of the number of qubits instead of linearly. We explore the concentration phenomenon of this error as well as its implications for local observables in the thermodynamic limit. Moreover, we show that stochastic error cancellation also manifests in the fidelity between the target state at the end of time-evolution and the actual state we obtain in the presence of noise. This indicates that, to reach a certain fidelity, more noise can be tolerated than implied by the worst-case bound if the noise comes from many statistically independent sources.
Related papers
- Dilution of error in digital Hamiltonian simulation [0.0]
We provide a microscopic explanation of this dilution of errors based on the "relevant string" of operators.
We show that this explanation can predict when dilution of errors occurs and when it does not.
Our findings imply that digital quantum simulation with noisy devices is in appropriate cases scalable.
arXiv Detail & Related papers (2024-09-06T13:04:21Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - A protocol to characterize errors in quantum simulation of many-body
physics [1.4028140181591504]
We show that the symmetries of the target many-body Hamiltonian can be used to benchmark and characterize experimental errors in quantum simulation.
We consider two forms of errors: (i) unitary errors arising out of systematic errors in the applied Hamiltonian and (ii) canonical non-Markovian errors arising out of random shot-to-shot fluctuations in the applied Hamiltonian.
arXiv Detail & Related papers (2023-11-06T19:00:07Z) - Limitations of probabilistic error cancellation for open dynamics beyond
sampling overhead [1.1864834557465163]
Methods such as probabilistic error cancellation rely on discretizing the evolution into finite time steps and applying the mitigation layer after each time step.
This may lead to Trotter-like errors in the simulation results even if the error mitigation is implemented ideally.
We show that, they are determined by the commutating relations between the superoperators of the unitary part, the device noise part and the noise part of the open dynamics to be simulated.
arXiv Detail & Related papers (2023-08-02T21:45:06Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Simulation and performance analysis of quantum error correction with a
rotated surface code under a realistic noise model [0.6946929968559495]
Demonstration of quantum error correction (QEC) is one of the most important milestones in the realization of fully-fledged quantum computers.
In this work, we performed a full simulation of QEC for the rotated surface codes with a code distance 5, which employs 49 qubits.
We evaluate the logical error probability in a realistic noise model that incorporates not only Pauli errors but also coherent errors due to a systematic control error or unintended interactions.
arXiv Detail & Related papers (2022-04-25T02:45:06Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Hamiltonian simulation with random inputs [74.82351543483588]
Theory of average-case performance of Hamiltonian simulation with random initial states.
Numerical evidence suggests that this theory accurately characterizes the average error for concrete models.
arXiv Detail & Related papers (2021-11-08T19:08:42Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Hamiltonian Simulation Algorithms for Near-Term Quantum Hardware [6.445605125467574]
We develop quantum algorithms for Hamiltonian simulation "one level below" the circuit model.
We analyse the impact of these techniques under the standard error model.
We derive analytic circuit identities for efficiently synthesising multi-qubit evolutions from two-qubit interactions.
arXiv Detail & Related papers (2020-03-15T18:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.