論文の概要: Pre-processing matters: A segment search method for WSI classification
- arxiv url: http://arxiv.org/abs/2404.11161v1
- Date: Wed, 17 Apr 2024 08:21:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:45:15.591163
- Title: Pre-processing matters: A segment search method for WSI classification
- Title(参考訳): 事前処理の課題:WSI分類のためのセグメント探索法
- Authors: Jun Wang, Yufei Cui, Yu Mao, Nan Guan, Chun Jason Xue,
- Abstract要約: 本研究では,前処理パラメータが単一および複数ドメインデータセット間の推論とトレーニングに与える影響を解析する。
そこで本研究では,高速パラメータチューニングのための類似性に基づくシミュレート・アニーリング手法を提案する。
提案手法は精度が0.512から0.847に向上することを示す。
- 参考スコア(独自算出の注目度): 19.813558168408047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-processing for whole slide images can affect classification performance both in the training and inference stages. Our study analyzes the impact of pre-processing parameters on inference and training across single- and multiple-domain datasets. However, searching for an optimal parameter set is time-consuming. To overcome this, we propose a novel Similarity-based Simulated Annealing approach for fast parameter tuning to enhance inference performance on single-domain data. Our method demonstrates significant performance improvements in accuracy, which raise accuracy from 0.512 to 0.847 in a single domain. We further extend our insight into training performance in multi-domain data by employing a novel Bayesian optimization to search optimal pre-processing parameters, resulting in a high AUC of 0.967. We highlight that better pre-processing for WSI can contribute to further accuracy improvement in the histology area.
- Abstract(参考訳): スライド画像全体の前処理は、トレーニング段階と推論段階の両方で分類性能に影響を与える可能性がある。
本研究では,前処理パラメータが単一および複数ドメインデータセット間の推論とトレーニングに与える影響を解析する。
しかし,最適パラメータ集合の探索には時間を要する。
そこで本研究では,単一領域データにおける推論性能を向上させるために,高速パラメータチューニングのためのSimisity-based Simulated Annealingアプローチを提案する。
提案手法は精度が0.512から0.847に向上することを示す。
さらに、最適な前処理パラメータの探索にベイズ最適化を用いることで、マルチドメインデータのトレーニング性能に関する洞察を深め、その結果、0.967のAUCが得られる。
我々は、WSIのためのより良い前処理が、組織学領域のさらなる精度向上に寄与できることを強調した。
関連論文リスト
- Interpretable label-free self-guided subspace clustering [0.0]
多数部分空間クラスタリング(SC)アルゴリズムは1つ以上のハイパーパラメータに依存しており、高いクラスタリング性能を達成するためにはSCアルゴリズムを慎重に調整する必要がある。
我々は,精度 (ACC) や正規化相互情報 (NMI) などのクラスタリング品質指標を用いたラベル非依存HPOの新しい手法を提案する。
本手法は,複数のシングルビューおよびマルチビューSCアルゴリズムを用いて,達成された性能を,桁,顔,オブジェクトを表す6つのデータセットで比較する。
論文 参考訳(メタデータ) (2024-11-26T10:29:09Z) - Attention Prompt Tuning: Parameter-efficient Adaptation of Pre-trained
Models for Spatiotemporal Modeling [32.603558214472265]
本稿では,アクション認識などのビデオベースアプリケーションに対して,Attention Prompt Tuning(APT)を導入する。
APTは、バックボーンを凍結させながら微調整中にデータトークンとともに学習可能なプロンプトのセットを注入する。
提案手法は,FLOPとレイテンシを著しく低減するとともに,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-03-11T17:59:41Z) - Hyperparameter Adaptive Search for Surrogate Optimization: A
Self-Adjusting Approach [1.6317061277457001]
サーロゲート最適化(SO)アルゴリズムは高価なブラックボックス関数の最適化を約束している。
提案手法は,各問題とSOアプローチに特有の最も影響力のあるハイパーパラメータを同定し,修正する。
実験により,様々なSOアルゴリズムの性能向上におけるHASSOの有効性が示された。
論文 参考訳(メタデータ) (2023-10-12T01:26:05Z) - Residual Prompt Tuning: Improving Prompt Tuning with Residual
Reparameterization [57.379285443780894]
Residual Prompt Tuningは,プロンプトチューニングの性能と安定性を大幅に向上させる,シンプルで効率的な手法である。
提案手法は,T5-Baseによるプロンプトチューニングよりも+7ポイント向上し,パフォーマンスを損なうことなく,プロンプト長を10倍短縮できることを示す。
論文 参考訳(メタデータ) (2023-05-06T05:35:14Z) - Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning [91.5113227694443]
私たちは新しいビジュアルを提案します。
Sensuous-Aware Fine-Tuning (SPT) スキーム。
SPTはタスク固有の重要な位置にトレーニング可能なパラメータを割り当てる。
ダウンストリーム認識タスクの幅広い実験により,SPTは既存のPEFT法と相補的であることが示された。
論文 参考訳(メタデータ) (2023-03-15T12:34:24Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
我々は,テキストベースのトランスフォーマーHPOフレームワークであるOptFormerを紹介した。
実験の結果,OptFormerは少なくとも7種類のHPOアルゴリズムを模倣できることがわかった。
論文 参考訳(メタデータ) (2022-05-26T12:51:32Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - Self-supervised learning for fast and scalable time series
hyper-parameter tuning [14.9124328578934]
時系列モデルのハイパーパラメータは時系列解析において重要な役割を果たす。
我々はHPT(SSL-HPT)のための自己教師型学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-10T21:16:13Z) - Cost-Efficient Online Hyperparameter Optimization [94.60924644778558]
実験の単一実行でヒトのエキスパートレベルのパフォーマンスに達するオンラインHPOアルゴリズムを提案します。
提案するオンラインhpoアルゴリズムは,実験の1回で人間のエキスパートレベルのパフォーマンスに到達できるが,通常のトレーニングに比べて計算オーバーヘッドは少ない。
論文 参考訳(メタデータ) (2021-01-17T04:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。