論文の概要: Kathakali Hand Gesture Recognition With Minimal Data
- arxiv url: http://arxiv.org/abs/2404.11205v1
- Date: Wed, 17 Apr 2024 09:37:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:35:31.438953
- Title: Kathakali Hand Gesture Recognition With Minimal Data
- Title(参考訳): 最小データを用いたカタカリ手指ジェスチャー認識
- Authors: Kavitha Raju, Nandini J. Warrier,
- Abstract要約: インド古典のダンスドラマ『カタカリ』には、ムドラと呼ばれる手振りのセットがあり、ダンスの動きと姿勢の基本的な単位となっている。
泥の認識は、そのデジタル処理における最初のステップの1つとなる。
我々はKathakali Mudra認識のためのデータセットを開発し、公開しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Indian classical dance-drama Kathakali has a set of hand gestures called Mudras, which form the fundamental units of all its dance moves and postures. Recognizing the depicted mudra becomes one of the first steps in its digital processing. The work treats the problem as a 24-class classification task and proposes a vector-similarity-based approach using pose estimation, eliminating the need for further training or fine-tuning. This approach overcomes the challenge of data scarcity that limits the application of AI in similar domains. The method attains 92% accuracy which is a similar or better performance as other model-training-based works existing in the domain, with the added advantage that the method can still work with data sizes as small as 1 or 5 samples with a slightly reduced performance. Working with images, videos, and even real-time streams is possible. The system can work with hand-cropped or full-body images alike. We have developed and made public a dataset for the Kathakali Mudra Recognition as part of this work.
- Abstract(参考訳): インド古典のダンスドラマ『カタカリ』には、ムドラと呼ばれる手振りのセットがあり、ダンスの動きと姿勢の基本的な単位となっている。
描かれた泥の認識は、そのデジタル処理における最初のステップの1つとなる。
この研究は24クラス分類タスクとしてこの問題を扱い、ポーズ推定を用いたベクトル類似性に基づくアプローチを提案し、さらなるトレーニングや微調整の必要性を排除した。
このアプローチは、同様のドメインにおけるAIの適用を制限する、データの不足という課題を克服するものだ。
この手法は、ドメインに存在する他のモデルトレーニングベースの作業と同じような、あるいはより優れたパフォーマンスの92%の精度を達成する。
画像やビデオ、さらにはリアルタイムストリームの操作も可能だ。
このシステムは、手書き画像やフルボディ画像でも使える。
我々は、この研究の一環として、カタリ・ムドラ認識のためのデータセットを開発し、公開しました。
関連論文リスト
- Domain-invariant Prototypes for Semantic Segmentation [30.932130453313537]
ドメイン適応型セマンティックセグメンテーションのためのドメイン不変のプロトタイプを学習する。
本手法は,1段階の訓練のみを伴い,大規模な未注釈対象画像に対してトレーニングを行う必要はない。
論文 参考訳(メタデータ) (2022-08-12T02:21:05Z) - Few-shot Open-set Recognition Using Background as Unknowns [58.04165813493666]
未使用のオープンセット認識は、見知らぬクラスの限られた訓練データしか持たない、目に見える画像と新しい画像の両方を分類することを目的としている。
提案手法は,複数のベースラインより優れるだけでなく,3つのベンチマークで新たな結果が得られた。
論文 参考訳(メタデータ) (2022-07-19T04:19:29Z) - Recent Advances in Scene Image Representation and Classification [1.8369974607582584]
本稿では,画像分類に広く用いられている既存のシーン画像表現手法について概説する。
我々は、その性能を質的に(例えば、出力の品質、pros/consなど)、量的に(例えば、精度)比較する。
本稿では,従来のコンピュータビジョン(CV)ベースの手法,ディープラーニング(DL)ベースの手法,検索エンジン(SE)ベースの手法について,最近のシーン画像表現手法の詳細な知見と応用について述べる。
論文 参考訳(メタデータ) (2022-06-15T07:12:23Z) - Perspective Flow Aggregation for Data-Limited 6D Object Pose Estimation [121.02948087956955]
宇宙や水中の深層などのいくつかのアプリケーションでは、実際の画像を取得することは、注釈のないものであっても、事実上不可能である。
本稿では,合成画像のみに限定してトレーニングできる手法を提案する。
これは、アノテートされた実画像を必要としない場合、トレーニングのためにアノテートされた実画像を必要とするメソッドと同等に動作し、20個の実画像を使用する場合、かなりパフォーマンスが向上する。
論文 参考訳(メタデータ) (2022-03-18T10:20:21Z) - Partner-Assisted Learning for Few-Shot Image Classification [54.66864961784989]
人間の視覚能力を模倣し、徹底的な人間のアノテーションを必要とせずに効果的なモデルを学ぶために、わずかなショットラーニングが研究されている。
本稿では,新しいクラスのプロトタイプをラベル付きサンプルから推定できるように,要素表現を得るためのトレーニング戦略の設計に焦点をあてる。
本稿では,まずパートナーエンコーダのペアワイド類似性をモデル化し,ソフトアンカーとして機能する特徴を抽出し,その出力をソフトアンカーと整列させ,分類性能を最大化しようとする2段階トレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T22:46:19Z) - MEAL: Manifold Embedding-based Active Learning [0.0]
アクティブな学習は、ラベル付けのための最も有望なサンプルを提案することで、少量のデータから学ぶのに役立つ。
本稿では,各獲得ステップにおいて,有望な画像領域を提案するアクティブラーニングのためのプールベースの新しい手法を提案する。
また,Cityscapesでは,Cityscapesでは,CamVidの性能向上が認められなかった。
論文 参考訳(メタデータ) (2021-06-22T15:22:56Z) - SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild [62.450907796261646]
手のジェスチャーの認識は、ソフトウェアによって推定される手の骨格のストリームから直接行うことができる。
最近のスケルトンからのジェスチャーや行動認識の進歩にもかかわらず、現在の最先端技術が現実のシナリオでどの程度うまく機能するかは明らかではない。
本稿では,SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild contestについて述べる。
論文 参考訳(メタデータ) (2021-06-21T10:57:49Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences
for Urban Scene Segmentation [57.68890534164427]
本研究では,未ラベル映像シーケンスと追加画像の半教師付き学習を利用して,都市景観セグメンテーションの性能を向上させることができるかどうかを問う。
我々は単にラベルのないデータに対して擬似ラベルを予測し、人間の注釈付きデータと擬似ラベル付きデータの両方でその後のモデルを訓練する。
我々のNaive-Studentモデルは、このような単純で効果的な反復的半教師付き学習で訓練され、3つのCityscapesベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2020-05-20T18:00:05Z) - Combining Deep Learning with Geometric Features for Image based
Localization in the Gastrointestinal Tract [8.510792628268824]
そこで本研究では,Deep Learning法と従来の特徴量に基づく手法を併用して,小さなトレーニングデータを用いたより優れたローカライゼーションを実現する手法を提案する。
本手法は, セグメンテッドトレーニング画像セットにおいて, 最寄りのゾーンに数発の分類を行うために, シームズネットワーク構造を導入することにより, 両世界の長所をフル活用する。
精度は28.94% (Position) と10.97% (Orientation) で改善されている。
論文 参考訳(メタデータ) (2020-05-11T23:04:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。