論文の概要: Prompt-tuning for Clickbait Detection via Text Summarization
- arxiv url: http://arxiv.org/abs/2404.11206v1
- Date: Wed, 17 Apr 2024 09:39:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:35:31.436287
- Title: Prompt-tuning for Clickbait Detection via Text Summarization
- Title(参考訳): テキスト要約によるクリックベイト検出のためのプロンプトチューニング
- Authors: Haoxiang Deng, Yi Zhu, Ye Wang, Jipeng Qiang, Yunhao Yuan, Yun Li, Runmei Zhang,
- Abstract要約: クリックベイト(Clickbaits)は、ソーシャルな投稿や、クリック数を増やすためにユーザーを誘惑する偽ニュースの見出しだ。
既存のほとんどの手法は、クリックベイトを検出するために見出しと内容のセマンティックな類似性を計算する。
テキスト要約によるクリックベイト検出のプロンプトチューニング手法を提案する。
- 参考スコア(独自算出の注目度): 18.027598728494485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clickbaits are surprising social posts or deceptive news headlines that attempt to lure users for more clicks, which have posted at unprecedented rates for more profit or commercial revenue. The spread of clickbait has significant negative impacts on the users, which brings users misleading or even click-jacking attacks. Different from fake news, the crucial problem in clickbait detection is determining whether the headline matches the corresponding content. Most existing methods compute the semantic similarity between the headlines and contents for detecting clickbait. However, due to significant differences in length and semantic features between headlines and contents, directly calculating semantic similarity is often difficult to summarize the relationship between them. To address this problem, we propose a prompt-tuning method for clickbait detection via text summarization in this paper, text summarization is introduced to summarize the contents, and clickbait detection is performed based on the similarity between the generated summary and the contents. Specifically, we first introduce a two-stage text summarization model to produce high-quality news summaries based on pre-trained language models, and then both the headlines and new generated summaries are incorporated as the inputs for prompt-tuning. Additionally, a variety of strategies are conducted to incorporate external knowledge for improving the performance of clickbait detection. The extensive experiments on well-known clickbait detection datasets demonstrate that our method achieved state-of-the-art performance.
- Abstract(参考訳): クリックベイトは驚くべきソーシャル投稿や偽ニュースの見出しで、クリック数を増やすためにユーザーを引き付けようとするものだ。
クリックベイトの拡散はユーザーに大きな悪影響を及ぼし、ユーザーが誤解を招いたり、クリックジャック攻撃さえもする。
フェイクニュースと異なり、クリックベイト検出における重要な問題は、見出しが対応するコンテンツと一致するかどうかを決定することである。
既存のほとんどの手法は、クリックベイトを検出するために見出しと内容のセマンティックな類似性を計算する。
しかし、見出しと内容の長大な違いと意味的特徴により、直接的に意味的類似性を計算することはしばしば困難である。
そこで本論文では,テキスト要約によるクリックベイト検出の高速化手法を提案し,その内容を要約するためにテキスト要約を導入し,生成された要約と内容との類似性に基づいてクリックベイト検出を行う。
具体的には、まず、事前訓練された言語モデルに基づいて高品質なニュース要約を生成するための2段階のテキスト要約モデルを導入し、その後、見出しと新たに生成された要約をインプットとして組み込む。
さらに,クリックベイト検出の性能向上のために,外部知識を取り入れるための様々な戦略が実施されている。
有名なクリックベイト検出データセットに関する広範な実験により,本手法が最先端の性能を達成したことを示す。
関連論文リスト
- BanglaBait: Semi-Supervised Adversarial Approach for Clickbait Detection
on Bangla Clickbait Dataset [0.6008132390640294]
15,056個のラベル付きニュース記事と65,406個のラベル付きニュース記事を含むバングラクリックベイト検出データセットを構築した。
各記事は3人の専門言語学者によってラベル付けされ、記事のタイトル、ボディ、その他のメタデータが含まれている。
半監視世代適応ネットワーク(SS GANs)を用いて,事前学習したバングラ変圧器モデルを逆向きに微調整する。
論文 参考訳(メタデータ) (2023-11-10T17:38:46Z) - A Novel Contrastive Learning Method for Clickbait Detection on RoCliCo:
A Romanian Clickbait Corpus of News Articles [29.119911024232064]
ルーマニア語のクリックベイトコーパスは公開されていない。
クリックベイトラベルと非クリックベイトラベルを手動で注釈付けした8,313のニュースサンプルからなるルーマニア語Clickbait Corpus(RoCliCo)を紹介した。
本稿では,ニュースタイトルやコンテンツが深い距離空間にエンコードされることを学習する,BERTに基づく新しいコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2023-10-10T11:38:16Z) - Improving the Robustness of Summarization Systems with Dual Augmentation [68.53139002203118]
頑健な要約システムは、入力中の特定の単語の選択やノイズに関わらず、文書のギストをキャプチャできるべきである。
まず,単語レベルの同義語置換や雑音を含む摂動に対する要約モデルの頑健性について検討する。
SummAttackerを提案する。これは言語モデルに基づく対数サンプルを生成するための効率的な手法である。
論文 参考訳(メタデータ) (2023-06-01T19:04:17Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
テキストが仮説を包含するのは、仮説の真の価値がテキストに従う場合に限る。
本稿では,テキストと仮説のテキストの包含関係を同定する新しい手法を提案する。
本手法では,テキスト・ハイブリッド・ペア間の意味的含意関係を識別できる要素ワイド・マンハッタン距離ベクトルベースの特徴を用いる。
論文 参考訳(メタデータ) (2022-10-18T10:03:51Z) - WeClick: Weakly-Supervised Video Semantic Segmentation with Click
Annotations [64.52412111417019]
WeClick と呼ばれるクリックアノテーション付きビデオセマンティックセマンティックセマンティックパイプラインを提案する。
詳細なセマンティック情報はクリックによってキャプチャされないため、クリックラベルによる直接トレーニングはセグメンテーションの予測が不十分になる。
WeClickは最先端の手法より優れ、ベースラインよりも10.24%のmIoUで性能を向上し、リアルタイム実行を実現している。
論文 参考訳(メタデータ) (2021-07-07T09:12:46Z) - Clickbait Headline Detection in Indonesian News Sites using Multilingual
Bidirectional Encoder Representations from Transformers (M-BERT) [0.0]
埋め込み層として機能する事前学習言語モデルM−BERTを備えたニューラルネットワークと、100ノード隠蔽層とを組み合わせて、クリックベイト見出しを検出する。
トレーニングデータセットとして合計6632の見出しで、分類器は非常によく機能した。
インドネシア語テキスト分類タスクにおける多言語BERTの使用がテストされ、さらなる拡張が可能となった。
論文 参考訳(メタデータ) (2021-02-02T14:13:02Z) - Improving Machine Reading Comprehension with Contextualized Commonsense
Knowledge [62.46091695615262]
我々は、機械読解の理解を改善するために、常識知識を抽出することを目指している。
構造化知識を文脈内に配置することで,関係を暗黙的に表現することを提案する。
我々は,教師の学習パラダイムを用いて,複数種類の文脈的知識を学生機械読取機に注入する。
論文 参考訳(メタデータ) (2020-09-12T17:20:01Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Clickbait Detection using Multiple Categorization Techniques [6.396288020763144]
本稿では,クリックベイトとノンクリックベイトを分離するためのハイブリッド分類手法を提案する。
提案するハイブリッドモデルは, 個々の分類手法よりも堅牢で信頼性が高く, 効率的である。
論文 参考訳(メタデータ) (2020-03-29T07:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。