論文の概要: Feature Corrective Transfer Learning: End-to-End Solutions to Object Detection in Non-Ideal Visual Conditions
- arxiv url: http://arxiv.org/abs/2404.11214v1
- Date: Wed, 17 Apr 2024 09:58:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:35:31.422667
- Title: Feature Corrective Transfer Learning: End-to-End Solutions to Object Detection in Non-Ideal Visual Conditions
- Title(参考訳): 特徴補正伝達学習:非視覚条件における物体検出の終端解
- Authors: Chuheng Wei, Guoyuan Wu, Matthew J. Barth,
- Abstract要約: 障害シナリオにおけるオブジェクトのエンドツーエンド検出を容易にする新しい手法として,"Feature Corrective Transfer Learning"がある。
非理想画像は、初期理想RGBモデルと特徴マップを比較して処理される。
このアプローチは、直接特徴写像補正により、様々な条件にまたがってオブジェクト検出を行うモデルの能力を洗練させる。
- 参考スコア(独自算出の注目度): 11.90136900277127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant challenge in the field of object detection lies in the system's performance under non-ideal imaging conditions, such as rain, fog, low illumination, or raw Bayer images that lack ISP processing. Our study introduces "Feature Corrective Transfer Learning", a novel approach that leverages transfer learning and a bespoke loss function to facilitate the end-to-end detection of objects in these challenging scenarios without the need to convert non-ideal images into their RGB counterparts. In our methodology, we initially train a comprehensive model on a pristine RGB image dataset. Subsequently, non-ideal images are processed by comparing their feature maps against those from the initial ideal RGB model. This comparison employs the Extended Area Novel Structural Discrepancy Loss (EANSDL), a novel loss function designed to quantify similarities and integrate them into the detection loss. This approach refines the model's ability to perform object detection across varying conditions through direct feature map correction, encapsulating the essence of Feature Corrective Transfer Learning. Experimental validation on variants of the KITTI dataset demonstrates a significant improvement in mean Average Precision (mAP), resulting in a 3.8-8.1% relative enhancement in detection under non-ideal conditions compared to the baseline model, and a less marginal performance difference within 1.3% of the mAP@[0.5:0.95] achieved under ideal conditions by the standard Faster RCNN algorithm.
- Abstract(参考訳): 物体検出の分野における重要な課題は、雨、霧、照明の少ない、ISP処理を欠いたバイエルの生画像など、非理想的な撮像条件下でのシステムの性能にある。
本研究は,非理想的画像からRGB画像への変換を必要とせずに,これらの難易度シナリオにおけるオブジェクトのエンドツーエンド検出を容易にするために,転送学習と分岐損失関数を活用する新しい手法である「Feature Corrective Transfer Learning」を紹介する。
提案手法では,まず,既存のRGB画像データセットを用いて包括的モデルを訓練する。
その後、初期理想RGBモデルと特徴マップを比較して、非理想画像を処理する。
この比較は、類似性を定量化し、それらを検出損失に組み込むように設計された新規な損失関数である拡張領域新規構造離散損失(EANSDL)を用いている。
このアプローチは、特徴補正学習の本質をカプセル化した直接特徴写像補正により、様々な条件でオブジェクト検出を行うモデルの能力を洗練する。
KITTIデータセットの変種に関する実験的検証では、平均平均精度(mAP)が大幅に改善され、3.8~8.1%の相対的な検出精度がベースラインモデルと比較して非理想的条件で向上し、標準のFaster RCNNアルゴリズムによる理想的な条件下で達成されたmAP@[0.5:0.95]の1.3%未満の性能差が少ないことが示されている。
関連論文リスト
- Calibrated Cache Model for Few-Shot Vision-Language Model Adaptation [36.45488536471859]
類似性は、ラベルのない画像を使用することで画像と画像の類似性を洗練する。
重みは、トレーニングサンプル間の関係を適切にモデル化するために、精度行列を重み関数に導入する。
GPの複雑さを低減するため,グループベースの学習戦略を提案する。
論文 参考訳(メタデータ) (2024-10-11T15:12:30Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - Tensor Factorization for Leveraging Cross-Modal Knowledge in
Data-Constrained Infrared Object Detection [22.60228799622782]
赤外線画像における物体検出のボトルネックは、十分なラベル付きトレーニングデータがないことである。
我々は、RGBモードにおけるモデル性能を保ちながら、RGBモードからオブジェクト検出器をIRモードにスケールするために、RGBモードからの手がかりを活用しようとしている。
まず、これらの因子行列をRGBモードで事前トレーニングし、多くのトレーニングデータが存在すると仮定した後、IRモードでトレーニングするためのトレーニング可能なパラメータをわずかに増やして過度な適合を避ける。
論文 参考訳(メタデータ) (2023-09-28T16:55:52Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。