論文の概要: PETALface: Parameter Efficient Transfer Learning for Low-resolution Face Recognition
- arxiv url: http://arxiv.org/abs/2412.07771v1
- Date: Tue, 10 Dec 2024 18:59:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:43.626066
- Title: PETALface: Parameter Efficient Transfer Learning for Low-resolution Face Recognition
- Title(参考訳): PETalface:低分解能顔認識のためのパラメータ伝達学習
- Authors: Kartik Narayan, Nithin Gopalakrishnan Nair, Jennifer Xu, Rama Chellappa, Vishal M. Patel,
- Abstract要約: PETALfaceは、PEFTのパワーを低解像度の顔認識に活用した最初の作品である。
バックボーンに2つの低ランク適応モジュールを導入し、入力画像の品質に基づいて重みを調整し、ギャラリーとプローブ画像の品質の違いを考慮に入れた。
実験により,提案手法は高分解能・混合品質データセットの性能を保ちながら,低分解能データセットの完全な微調整よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 54.642714288448744
- License:
- Abstract: Pre-training on large-scale datasets and utilizing margin-based loss functions have been highly successful in training models for high-resolution face recognition. However, these models struggle with low-resolution face datasets, in which the faces lack the facial attributes necessary for distinguishing different faces. Full fine-tuning on low-resolution datasets, a naive method for adapting the model, yields inferior performance due to catastrophic forgetting of pre-trained knowledge. Additionally the domain difference between high-resolution (HR) gallery images and low-resolution (LR) probe images in low resolution datasets leads to poor convergence for a single model to adapt to both gallery and probe after fine-tuning. To this end, we propose PETALface, a Parameter-Efficient Transfer Learning approach for low-resolution face recognition. Through PETALface, we attempt to solve both the aforementioned problems. (1) We solve catastrophic forgetting by leveraging the power of parameter efficient fine-tuning(PEFT). (2) We introduce two low-rank adaptation modules to the backbone, with weights adjusted based on the input image quality to account for the difference in quality for the gallery and probe images. To the best of our knowledge, PETALface is the first work leveraging the powers of PEFT for low resolution face recognition. Extensive experiments demonstrate that the proposed method outperforms full fine-tuning on low-resolution datasets while preserving performance on high-resolution and mixed-quality datasets, all while using only 0.48% of the parameters. Code: https://kartik-3004.github.io/PETALface/
- Abstract(参考訳): 大規模データセットの事前トレーニングとマージンに基づく損失関数の利用は、高解像度の顔認識のためのトレーニングモデルで成功している。
しかし、これらのモデルは低解像度の顔データセットと競合し、顔は異なる顔の識別に必要な顔属性を欠いている。
低解像度データセットの完全な微調整は、事前訓練された知識の破滅的な忘れ込みにより、モデルに適応するための素質的な手法であり、性能が劣る。
さらに、高分解能(HR)ギャラリー画像と低分解能(LR)プローブ画像との領域差は、微調整後のギャラリーとプローブの両方に適応する単一のモデルにおいて、収束不良をもたらす。
そこで本研究では,低分解能顔認証のためのパラメータ効率変換学習手法PETALfaceを提案する。
PETALfaceを通じて、上記の2つの問題を解決する。
1)パラメータ効率の良い微調整(PEFT)のパワーを活用することにより,破滅的な忘れを解消する。
2) 背骨に低ランク適応モジュールを2つ導入し, 入力画像の品質に基づいて重みを調整し, ギャラリーやプローブ画像の品質の差を考慮に入れた。
我々の知る限りでは、PETALfaceはPEFTのパワーを低解像度の顔認識に活用した最初の作品である。
大規模な実験により,提案手法は高解像度データセットと混合品質データセットの性能を保ちながら,低解像度データセットの完全な微調整よりも優れており,パラメータの0.48%しか使用していないことがわかった。
コード:https://kartik-3004.github.io/PETALface/
関連論文リスト
- Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem [23.833099288826045]
画素ベースの回帰損失を用いた単一画像超解法(SISR)モデルのトレーニングは、高い歪みメトリクススコアを得ることができる。
しかし、高周波の詳細の回復が不十分なため、しばしばぼやけた画像が生じる。
本稿では,Multi-Objective Optimization(MOO)をSISRモデルのトレーニングプロセスに組み込んで,知覚品質と歪みのバランスをとる手法を提案する。
論文 参考訳(メタデータ) (2024-09-05T02:14:04Z) - Assessing UHD Image Quality from Aesthetics, Distortions, and Saliency [51.36674160287799]
我々は3つの視点からUHD画像の品質を評価するためにマルチブランチディープニューラルネットワーク(DNN)を設計する。
UHD画像から低解像度画像から美的特徴を抽出する。
UHD画像から抽出したミニパッチからなる断片画像を用いて, 技術的歪みを測定する。
UHD画像の塩分含有量を検知し、収穫し、塩分領域から品質認識特徴を抽出する。
論文 参考訳(メタデータ) (2024-09-01T15:26:11Z) - OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model [6.83367289911244]
ODI(Omnidirectional Image)は、現実世界の視覚タスクで一般的に使われ、高解像度のODIは関連する視覚タスクのパフォーマンス向上に役立つ。
ODIの既存の超解像法のほとんどはエンドツーエンドの学習戦略を用いており、結果として生成された画像の劣る現実性をもたらす。
論文 参考訳(メタデータ) (2024-04-16T06:39:37Z) - MetaF2N: Blind Image Super-Resolution by Learning Efficient Model
Adaptation from Faces [51.42949911178461]
メタ学習フレームワークにおいて,自然画像全体に対応するためのモデルパラメータを微調整するメタF2Nという手法を提案する。
復元された顔と接地構造とのギャップを考慮すると,低信頼領域の影響を低減するために,異なる位置における損失重みを適応的に予測するMaskNetを配置する。
論文 参考訳(メタデータ) (2023-09-15T02:45:21Z) - Perception-Distortion Balanced ADMM Optimization for Single-Image
Super-Resolution [29.19388490351459]
低周波制約(LFc-SR)を持つ新しい超解像モデルを提案する。
制約付きモデルの非自明な学習のためのADMMに基づく交互最適化手法を提案する。
実験の結果,提案手法は加工後処理の煩雑さを伴わず,最先端の性能を達成できた。
論文 参考訳(メタデータ) (2022-08-05T05:37:55Z) - AdaFace: Quality Adaptive Margin for Face Recognition [56.99208144386127]
本稿では、損失関数、すなわち画像品質における適応性の別の側面を紹介する。
そこで本稿では,画像品質に基づいて異なる難易度を示す新たな損失関数を提案する。
提案手法は,4つのデータセット上でのSoTA(State-of-the-art)による顔認識性能を向上させる。
論文 参考訳(メタデータ) (2022-04-03T01:23:41Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - Boosting High-Level Vision with Joint Compression Artifacts Reduction
and Super-Resolution [10.960291115491504]
任意の品質係数で圧縮された低解像度画像から、アーティファクトフリーの高解像度画像を生成する。
文脈認識型CARとSRニューラルネットワーク(CAJNN)は、局所的特徴と非局所的特徴を統合し、CARとSRを1段階で解く。
高品質で高解像度な画像を予測するために、ディープ・リコンストラクション・ネットワークが採用されている。
論文 参考訳(メタデータ) (2020-10-18T04:17:08Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。