Simple In-place Data Augmentation for Surveillance Object Detection
- URL: http://arxiv.org/abs/2404.11226v1
- Date: Wed, 17 Apr 2024 10:20:16 GMT
- Title: Simple In-place Data Augmentation for Surveillance Object Detection
- Authors: Munkh-Erdene Otgonbold, Ganzorig Batnasan, Munkhjargal Gochoo,
- Abstract summary: We propose a straightforward augmentation technique tailored for object detection datasets.
Our approach focuses on placing objects in the same positions as the originals to ensure its effectiveness.
- Score: 2.3841361713768077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the need to improve model performance in traffic monitoring tasks with limited labeled samples, we propose a straightforward augmentation technique tailored for object detection datasets, specifically designed for stationary camera-based applications. Our approach focuses on placing objects in the same positions as the originals to ensure its effectiveness. By applying in-place augmentation on objects from the same camera input image, we address the challenge of overlapping with original and previously selected objects. Through extensive testing on two traffic monitoring datasets, we illustrate the efficacy of our augmentation strategy in improving model performance, particularly in scenarios with limited labeled samples and imbalanced class distributions. Notably, our method achieves comparable performance to models trained on the entire dataset while utilizing only 8.5 percent of the original data. Moreover, we report significant improvements, with mAP@.5 increasing from 0.4798 to 0.5025, and the mAP@.5:.95 rising from 0.29 to 0.3138 on the FishEye8K dataset. These results highlight the potential of our augmentation approach in enhancing object detection models for traffic monitoring applications.
Related papers
- Stanceformer: Target-Aware Transformer for Stance Detection [59.69858080492586]
Stance Detection involves discerning the stance expressed in a text towards a specific subject or target.
Prior works have relied on existing transformer models that lack the capability to prioritize targets effectively.
We introduce Stanceformer, a target-aware transformer model that incorporates enhanced attention towards the targets during both training and inference.
arXiv Detail & Related papers (2024-10-09T17:24:28Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Constellation Dataset: Benchmarking High-Altitude Object Detection for an Urban Intersection [7.419274609612015]
We introduce Constellation, a dataset of 13K images suitable for research on detection of objects in dense urban streetscapes observed from high-elevation cameras.
The dataset addresses the need for curated data to explore problems in small object detection exemplified by the limited pixel footprint of pedestrians.
We evaluate contemporary object detection architectures on the dataset, observing that state-of-the-art methods have lower performance in detecting small pedestrians compared to vehicles.
arXiv Detail & Related papers (2024-04-25T18:00:24Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
We present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture.
Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects.
arXiv Detail & Related papers (2024-01-26T05:50:58Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
We propose two data augmentation methods customized for tracking.
First, we optimize existing random cropping via a dynamic search radius mechanism and simulation for boundary samples.
Second, we propose a token-level feature mixing augmentation strategy, which enables the model against challenges like background interference.
arXiv Detail & Related papers (2023-09-15T09:18:54Z) - A Billion-scale Foundation Model for Remote Sensing Images [5.065947993017157]
Three key factors in pretraining foundation models are the pretraining method, the size of the pretraining dataset, and the number of model parameters.
This paper examines the effect of increasing the number of model parameters on the performance of foundation models in downstream tasks.
To the best of our knowledge, this is the first billion-scale foundation model in the remote sensing field.
arXiv Detail & Related papers (2023-04-11T13:33:45Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
Detection in large-scale scenes is a challenging problem due to small objects and extreme scale variation.
We propose a novel Adaptive Zoom (AdaZoom) network as a selective magnifier with flexible shape and focal length to adaptively zoom the focus regions for object detection.
arXiv Detail & Related papers (2021-06-19T03:30:22Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.