論文の概要: UCNN: A Convolutional Strategy on Unstructured Mesh
- arxiv url: http://arxiv.org/abs/2101.05207v1
- Date: Tue, 12 Jan 2021 10:48:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-04 01:29:28.632635
- Title: UCNN: A Convolutional Strategy on Unstructured Mesh
- Title(参考訳): UCNN:非構造化メッシュの畳み込み戦略
- Authors: Mengfei Xu, Shufang Song, Xuxiang Sun, Weiwei Zhang
- Abstract要約: 流体力学の機械学習では、フルコネクテッドニューラルネットワーク(FNN)はモデリングのローカル機能のみを使用します。
非構造畳み込みニューラルネットワーク(UCNN)が提案され、重み関数を通じて近隣ノードの特徴を集約し、効果的に活用する。
その結果,UCNNはモデリング過程においてより正確であることが示唆された。
- 参考スコア(独自算出の注目度): 1.871055320062469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In machine learning for fluid mechanics, fully-connected neural network (FNN)
only uses the local features for modelling, while the convolutional neural
network (CNN) cannot be applied to data on structured/unstructured mesh. In
order to overcome the limitations of FNN and CNN, the unstructured
convolutional neural network (UCNN) is proposed, which aggregates and
effectively exploits the features of neighbour nodes through the weight
function. Adjoint vector modelling is taken as the task to study the
performance of UCNN. The mapping function from flow-field features to adjoint
vector is constructed through efficient parallel implementation on GPU. The
modelling capability of UCNN is compared with that of FNN on validation set and
in aerodynamic shape optimization at test case. The influence of mesh changing
on the modelling capability of UCNN is further studied. The results indicate
that UCNN is more accurate in modelling process.
- Abstract(参考訳): 流体力学の機械学習では、フルコネクテッドニューラルネットワーク(FNN)はモデリングにのみローカル機能を使用するが、畳み込みニューラルネットワーク(CNN)は構造化/非構造化メッシュのデータには適用できない。
FNNとCNNの限界を克服するため、非構造畳み込みニューラルネットワーク(UCNN)が提案され、重み関数を通じて近隣ノードの特徴を集約し、効果的に活用する。
随伴ベクトルモデリングは、ucnnの性能を研究するタスクとして取られる。
フローフィールド特徴から随伴ベクトルへのマッピング関数は、GPU上の効率的な並列実装によって構成される。
UCNNのモデリング能力は,テストケースにおける検証セットや空力形状の最適化においてFNNと比較される。
さらに,メッシュ変化がUCNNのモデリング能力に及ぼす影響について検討した。
その結果,UCNNはモデリング過程においてより正確であることが示唆された。
関連論文リスト
- Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
我々は,ニューラルネットワークの内部動作を照らし,理解するための並列モデルを構築している。
RNNの各層が入力分布を変換して検出精度を高める方法を示す。
同時に、精度の向上を制限するために作用する副作用も発見する。
論文 参考訳(メタデータ) (2024-04-17T12:22:54Z) - Optimising Event-Driven Spiking Neural Network with Regularisation and
Cutoff [33.91830001268308]
スパイキングニューラルネットワーク(SNN)は、計算効率を有望に改善する。
現在のSNNトレーニング手法は、主に固定時間ステップアプローチを採用している。
本稿では,効率的な推論を実現するために,推論中にいつでもSNNを終了できるSNNの遮断を検討することを提案する。
論文 参考訳(メタデータ) (2023-01-23T16:14:09Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Topology-aware Convolutional Neural Network for Efficient Skeleton-based
Action Recognition [15.93566875893684]
本稿では,Topology-Aware CNN (Ta-CNN) という純粋CNNアーキテクチャを提案する。
我々は,マップ-アットエンド-グループ-マップ操作の組み合わせである,新しいクロスチャネル機能拡張モジュールを開発した。
特に,マップ-アットエンド-グループ-マップ操作の組み合わせである,新しいクロスチャネル機能拡張モジュールを開発した。
論文 参考訳(メタデータ) (2021-12-08T09:02:50Z) - Strengthening the Training of Convolutional Neural Networks By Using
Walsh Matrix [0.0]
分類性能を向上させるため,DNNのトレーニングと構造を変更した。
畳み込みニューラルネットワーク(CNN)の最後の層に続く最小距離ネットワーク(MDN)が分類器として使用される。
異なる領域では、ノード数が少ないDivFEを使用することでより高い分類性能が得られたことが観察されている。
論文 参考訳(メタデータ) (2021-03-31T18:06:11Z) - Spatio-Temporal Neural Network for Fitting and Forecasting COVID-19 [1.1129587851149594]
我々は、2020年の世界的な新型コロナウイルス感染拡大を予測するため、時空間ニューラルネットワーク(STNN)を構築した。
拡張空間状態STNN(STNN-A)と入力ゲートSTNN(STNN-I)の2つの改良されたSTNNアーキテクチャを提案する。
数値シミュレーションにより、STNNモデルはより正確なフィッティングと予測を提供し、空間データと時間データの両方を扱うことにより、他の多くのモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-03-22T13:59:14Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。