論文の概要: Single-temporal Supervised Remote Change Detection for Domain Generalization
- arxiv url: http://arxiv.org/abs/2404.11326v2
- Date: Thu, 18 Apr 2024 04:22:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 11:42:38.885907
- Title: Single-temporal Supervised Remote Change Detection for Domain Generalization
- Title(参考訳): 領域一般化のための単一時間監視型リモート変更検出
- Authors: Qiangang Du, Jinlong Peng, Xu Chen, Qingdong He, Liren He, Qiang Nie, Wenbing Zhu, Mingmin Chi, Yabiao Wang, Chengjie Wang,
- Abstract要約: 変化検出はリモートセンシング画像解析に広く応用されている。
既存の方法はデータセットごとに個別にトレーニングモデルを必要とする。
本稿では,変化検出領域の一般化のための視覚遅延事前学習に基づくマルチモーダルコントラスト学習(ChangeCLIP)を提案する。
- 参考スコア(独自算出の注目度): 42.55492600157288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection is widely applied in remote sensing image analysis. Existing methods require training models separately for each dataset, which leads to poor domain generalization. Moreover, these methods rely heavily on large amounts of high-quality pair-labelled data for training, which is expensive and impractical. In this paper, we propose a multimodal contrastive learning (ChangeCLIP) based on visual-language pre-training for change detection domain generalization. Additionally, we propose a dynamic context optimization for prompt learning. Meanwhile, to address the data dependency issue of existing methods, we introduce a single-temporal and controllable AI-generated training strategy (SAIN). This allows us to train the model using a large number of single-temporal images without image pairs in the real world, achieving excellent generalization. Extensive experiments on series of real change detection datasets validate the superiority and strong generalization of ChangeCLIP, outperforming state-of-the-art change detection methods. Code will be available.
- Abstract(参考訳): 変化検出はリモートセンシング画像解析に広く応用されている。
既存の方法はデータセットごとに個別にトレーニングモデルを必要とするため、ドメインの一般化は不十分である。
さらに、これらの手法は、高価で実用的でない、大量の高品質なペアラベルデータに大きく依存している。
本稿では,変化検出領域の一般化のための視覚言語事前学習に基づくマルチモーダルコントラスト学習(ChangeCLIP)を提案する。
さらに,素早い学習のための動的文脈最適化を提案する。
一方、既存の手法のデータ依存問題に対処するため、単時間かつ制御可能なAI生成トレーニング戦略(SAIN)を導入する。
これにより、実世界の画像ペアを使わずに、多数の単一時間画像を用いてモデルを訓練し、優れた一般化を実現することができる。
一連の実変化検出データセットに関する大規模な実験により、ChangeCLIPの優位性と強力な一般化が検証され、最先端の変化検出方法よりも優れた結果が得られた。
コードは利用可能です。
関連論文リスト
- GM-DF: Generalized Multi-Scenario Deepfake Detection [49.072106087564144]
既存の偽造検出は、通常、単一のドメインでのトレーニングモデルのパラダイムに従う。
本稿では,複数の顔偽造検出データセットを共同で訓練した場合のディープフェイク検出モデルの一般化能力について詳しく検討する。
論文 参考訳(メタデータ) (2024-06-28T17:42:08Z) - Adapting Vision Transformer for Efficient Change Detection [36.86012953467539]
本稿では,事前学習した画像エンコーダのパラメータを凍結し,追加のトレーニングパラメータを導入する,効率的なチューニング手法を提案する。
6つの変更検出ベンチマークで非常に低いリソース消費を維持しながら、競争力やよりよい結果を得ました。
論文 参考訳(メタデータ) (2023-12-08T07:09:03Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
ディープラーニングのためのNormAUG(Normalization-guided Augmentation)と呼ばれるシンプルで効果的な手法を提案する。
本手法は特徴レベルで多様な情報を導入し,主経路の一般化を改善する。
テスト段階では、アンサンブル戦略を利用して、モデルの補助経路からの予測を組み合わせ、さらなる性能向上を図る。
論文 参考訳(メタデータ) (2023-07-25T13:35:45Z) - You Only Train Once: Learning a General Anomaly Enhancement Network with
Random Masks for Hyperspectral Anomaly Detection [31.984085248224574]
ハイパースペクトル異常検出(AD)における一般化の課題に対処する新しいアプローチを提案する。
提案手法は,既存の手法で必要となるパラメータの調整や新しいテストシーンの再学習を不要とする。
本手法は,異なるセンサ装置によってトレーニングセットとテストセットがキャプチャされると,競争性能が向上する。
論文 参考訳(メタデータ) (2023-03-31T12:23:56Z) - Sketched Multi-view Subspace Learning for Hyperspectral Anomalous Change
Detection [12.719327447589345]
異常変化検出のためのスケッチ付きマルチビューサブスペース学習モデルを提案する。
提案モデルでは,画像ペアからの主要な情報を保存し,計算複雑性を向上させる。
実験は、ベンチマークハイパースペクトルリモートセンシングデータセットと自然なハイパースペクトルデータセットで実施される。
論文 参考訳(メタデータ) (2022-10-09T14:08:17Z) - Exploring Data Aggregation and Transformations to Generalize across
Visual Domains [0.0]
この論文は、ドメイン一般化(DG)、ドメイン適応(DA)およびそれらのバリエーションの研究に寄与する。
本稿では,機能集約戦略と視覚変換を利用するドメイン一般化とドメイン適応の新しいフレームワークを提案する。
提案手法が確立したDGおよびDAベンチマークにおいて,最先端の競争的アプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-20T14:58:14Z) - Learning to Generalize Unseen Domains via Memory-based Multi-Source
Meta-Learning for Person Re-Identification [59.326456778057384]
本稿では,メモリベースのマルチソースメタラーニングフレームワークを提案する。
また,メタテスト機能を多様化するメタバッチ正規化層(MetaBN)を提案する。
実験により、M$3$Lは、目に見えない領域に対するモデルの一般化能力を効果的に向上できることが示された。
論文 参考訳(メタデータ) (2020-12-01T11:38:16Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
マルチデータセット特徴一般化ネットワーク(MMFA-AAE)を提案する。
複数のラベル付きデータセットから普遍的なドメイン不変の特徴表現を学習し、それを見えないカメラシステムに一般化することができる。
また、最先端の教師付き手法や教師なしのドメイン適応手法を大きなマージンで超えている。
論文 参考訳(メタデータ) (2020-11-25T08:03:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。