Single-temporal Supervised Remote Change Detection for Domain Generalization
- URL: http://arxiv.org/abs/2404.11326v4
- Date: Tue, 23 Apr 2024 05:04:23 GMT
- Title: Single-temporal Supervised Remote Change Detection for Domain Generalization
- Authors: Qiangang Du, Jinlong Peng, Xu Chen, Qingdong He, Liren He, Qiang Nie, Wenbing Zhu, Mingmin Chi, Yabiao Wang, Chengjie Wang,
- Abstract summary: Change detection is widely applied in remote sensing image analysis.
Existing methods require training models separately for each dataset.
We propose a multimodal contrastive learning (ChangeCLIP) based on visual-labelled pre-training for change detection domain generalization.
- Score: 42.55492600157288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection is widely applied in remote sensing image analysis. Existing methods require training models separately for each dataset, which leads to poor domain generalization. Moreover, these methods rely heavily on large amounts of high-quality pair-labelled data for training, which is expensive and impractical. In this paper, we propose a multimodal contrastive learning (ChangeCLIP) based on visual-language pre-training for change detection domain generalization. Additionally, we propose a dynamic context optimization for prompt learning. Meanwhile, to address the data dependency issue of existing methods, we introduce a single-temporal and controllable AI-generated training strategy (SAIN). This allows us to train the model using a large number of single-temporal images without image pairs in the real world, achieving excellent generalization. Extensive experiments on series of real change detection datasets validate the superiority and strong generalization of ChangeCLIP, outperforming state-of-the-art change detection methods. Code will be available.
Related papers
- GM-DF: Generalized Multi-Scenario Deepfake Detection [49.072106087564144]
Existing face forgery detection usually follows the paradigm of training models in a single domain.
In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets.
arXiv Detail & Related papers (2024-06-28T17:42:08Z) - Adapting Vision Transformer for Efficient Change Detection [36.86012953467539]
We propose an efficient tuning approach that involves freezing the parameters of the pretrained image encoder and introducing additional training parameters.
We have achieved competitive or even better results while maintaining extremely low resource consumption across six change detection benchmarks.
arXiv Detail & Related papers (2023-12-08T07:09:03Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
We propose a simple yet effective method called NormAUG (Normalization-guided Augmentation) for deep learning.
Our method introduces diverse information at the feature level and improves the generalization of the main path.
In the test stage, we leverage an ensemble strategy to combine the predictions from the auxiliary path of our model, further boosting performance.
arXiv Detail & Related papers (2023-07-25T13:35:45Z) - You Only Train Once: Learning a General Anomaly Enhancement Network with
Random Masks for Hyperspectral Anomaly Detection [31.984085248224574]
We introduce a new approach to address the challenge of generalization in hyperspectral anomaly detection (AD)
Our method eliminates the need for adjusting parameters or retraining on new test scenes as required by most existing methods.
Our method achieves competitive performance when the training and test set are captured by different sensor devices.
arXiv Detail & Related papers (2023-03-31T12:23:56Z) - Sketched Multi-view Subspace Learning for Hyperspectral Anomalous Change
Detection [12.719327447589345]
A sketched multi-view subspace learning model is proposed for anomalous change detection.
The proposed model preserves major information from the image pairs and improves computational complexity.
experiments are conducted on a benchmark hyperspectral remote sensing dataset and a natural hyperspectral dataset.
arXiv Detail & Related papers (2022-10-09T14:08:17Z) - Exploring Data Aggregation and Transformations to Generalize across
Visual Domains [0.0]
This thesis contributes to research on Domain Generalization (DG), Domain Adaptation (DA) and their variations.
We propose new frameworks for Domain Generalization and Domain Adaptation which make use of feature aggregation strategies and visual transformations.
We show how our proposed solutions outperform competitive state-of-the-art approaches in established DG and DA benchmarks.
arXiv Detail & Related papers (2021-08-20T14:58:14Z) - Learning to Generalize Unseen Domains via Memory-based Multi-Source
Meta-Learning for Person Re-Identification [59.326456778057384]
We propose the Memory-based Multi-Source Meta-Learning framework to train a generalizable model for unseen domains.
We also present a meta batch normalization layer (MetaBN) to diversify meta-test features.
Experiments demonstrate that our M$3$L can effectively enhance the generalization ability of the model for unseen domains.
arXiv Detail & Related papers (2020-12-01T11:38:16Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.