Exploring Data Aggregation and Transformations to Generalize across
Visual Domains
- URL: http://arxiv.org/abs/2108.09208v1
- Date: Fri, 20 Aug 2021 14:58:14 GMT
- Title: Exploring Data Aggregation and Transformations to Generalize across
Visual Domains
- Authors: Antono D'Innocente
- Abstract summary: This thesis contributes to research on Domain Generalization (DG), Domain Adaptation (DA) and their variations.
We propose new frameworks for Domain Generalization and Domain Adaptation which make use of feature aggregation strategies and visual transformations.
We show how our proposed solutions outperform competitive state-of-the-art approaches in established DG and DA benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Computer vision has flourished in recent years thanks to Deep Learning
advancements, fast and scalable hardware solutions and large availability of
structured image data. Convolutional Neural Networks trained on supervised
tasks with backpropagation learn to extract meaningful representations from raw
pixels automatically, and surpass shallow methods in image understanding.
Though convenient, data-driven feature learning is prone to dataset bias: a
network learns its parameters from training signals alone, and will usually
perform poorly if train and test distribution differ. To alleviate this
problem, research on Domain Generalization (DG), Domain Adaptation (DA) and
their variations is increasing. This thesis contributes to these research
topics by presenting novel and effective ways to solve the dataset bias problem
in its various settings. We propose new frameworks for Domain Generalization
and Domain Adaptation which make use of feature aggregation strategies and
visual transformations via data-augmentation and multi-task integration of
self-supervision. We also design an algorithm that adapts an object detection
model to any out of distribution sample at test time. With through
experimentation, we show how our proposed solutions outperform competitive
state-of-the-art approaches in established DG and DA benchmarks.
Related papers
- Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - CNN Feature Map Augmentation for Single-Source Domain Generalization [6.053629733936548]
Domain Generalization (DG) has gained significant traction during the past few years.
The goal in DG is to produce models which continue to perform well when presented with data distributions different from the ones available during training.
We propose an alternative regularization technique for convolutional neural network architectures in the single-source DG image classification setting.
arXiv Detail & Related papers (2023-05-26T08:48:17Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
Unsupervised domain adaptation (UDA) is proposed to counter the performance drop on data in a target domain.
UDA has yielded promising results on natural image processing, video analysis, natural language processing, time-series data analysis, medical image analysis, etc.
arXiv Detail & Related papers (2022-08-15T20:05:07Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
The Visual Domain Adaptation (VisDA) 2021 competition tests models' ability to adapt to novel test distributions.
We will evaluate adaptation to novel viewpoints, backgrounds, modalities and degradation in quality.
Performance will be measured using a rigorous protocol, comparing to state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-07-23T03:21:51Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.