論文の概要: Following the Human Thread in Social Navigation
- arxiv url: http://arxiv.org/abs/2404.11327v1
- Date: Wed, 17 Apr 2024 12:39:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:04:48.462553
- Title: Following the Human Thread in Social Navigation
- Title(参考訳): ソーシャルナビゲーションにおけるヒューマンスレッドの追従
- Authors: Luca Scofano, Alessio Sampieri, Tommaso Campari, Valentino Sacco, Indro Spinelli, Lamberto Ballan, Fabio Galasso,
- Abstract要約: 共有環境での人間とロボットのコラボレーションの成功は、ロボットの人間の動きへのリアルタイム適応に依存している。
人間軌道は社会航法において重要な手がかりとして現れるが、ロボットの自我中心的な視点から部分的に観察可能である。
本研究では,ロボットの行動履歴に基づく社会ダイナミクス適応モデル(SDA)を提案する。
- 参考スコア(独自算出の注目度): 10.384957135051119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of collaboration between humans and robots in shared environments relies on the robot's real-time adaptation to human motion. Specifically, in Social Navigation, the agent should be close enough to assist but ready to back up to let the human move freely, avoiding collisions. Human trajectories emerge as crucial cues in Social Navigation, but they are partially observable from the robot's egocentric view and computationally complex to process. We propose the first Social Dynamics Adaptation model (SDA) based on the robot's state-action history to infer the social dynamics. We propose a two-stage Reinforcement Learning framework: the first learns to encode the human trajectories into social dynamics and learns a motion policy conditioned on this encoded information, the current status, and the previous action. Here, the trajectories are fully visible, i.e., assumed as privileged information. In the second stage, the trained policy operates without direct access to trajectories. Instead, the model infers the social dynamics solely from the history of previous actions and statuses in real-time. Tested on the novel Habitat 3.0 platform, SDA sets a novel state of the art (SoA) performance in finding and following humans.
- Abstract(参考訳): 共有環境での人間とロボットのコラボレーションの成功は、ロボットの人間の動きへのリアルタイム適応に依存している。
特にSocial Navigationでは、エージェントは十分に接近して助けるが、人間が自由に動き、衝突を避けられるようにバックアップする準備が整う必要がある。
人間軌道は社会航法において重要な手がかりとして現れるが、ロボットの自我中心的な視点から部分的に観察可能であり、処理には計算的に複雑である。
本研究では,ロボットの行動履歴に基づく社会ダイナミクス適応モデル(SDA)を提案する。
本稿では、まず、人間の軌道を社会力学にエンコードする2段階強化学習フレームワークを提案し、この符号化された情報、現在の状況、および以前の行動に基づいて、動作ポリシーを学習する。
ここでは、軌道は完全に見え、すなわち特権情報として仮定される。
第2段階では、訓練されたポリシーは軌道に直接アクセスすることなく機能する。
その代わり、このモデルは、過去の行動や状況の履歴だけからリアルタイムで社会的ダイナミクスを推測する。
新たなHabitat 3.0プラットフォームでテストされたSDAは、人間の発見と追跡において、新しい最先端(SoA)のパフォーマンスを設定できる。
関連論文リスト
- From Cognition to Precognition: A Future-Aware Framework for Social Navigation [1.9094009409000596]
本稿では,社会的に認識されたナビゲーションに取り組むための強化学習アーキテクチャであるFalconを提案する。
我々はSocial-HM3DとSocial-MP3Dという2つの新しいデータセットを含むSocialNavベンチマークを導入する。
我々は、最先端の学習法と古典的なルールベースの経路計画アルゴリズムを用いて、詳細な実験分析を行う。
論文 参考訳(メタデータ) (2024-09-20T06:08:24Z) - Learning Social Cost Functions for Human-Aware Path Planning [2.6995631218854235]
本稿では,一般的な社会的シナリオを認識し,それに対応するために従来のプランナーのコスト関数を変更する新しい手法を提案する。
我々のアプローチでは、ロボットはタスクごとに異なるモジュールを持つのではなく、単一の学習モデルで異なる社会的規範を学習することができる。
論文 参考訳(メタデータ) (2024-07-15T08:57:02Z) - Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning [0.7864304771129751]
移動ロボットは様々な混み合った状況で大規模に使われており、私たちの社会の一部になっている。
個人を考慮した移動ロボットの社会的に許容されるナビゲーション行動は、スケーラブルなアプリケーションと人間の受容にとって必須の要件である。
本稿では,ロボットの社会行動が適応的であり,人間との相互作用から生じる,社会統合型ナビゲーション手法を提案する。
論文 参考訳(メタデータ) (2024-03-14T18:25:40Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
論文 参考訳(メタデータ) (2024-02-07T11:37:14Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotionは、多種多様な視覚的手がかりを利用して人間の行動を予測する、汎用トランスフォーマーベースのモデルである。
提案手法は,JTA,JRDB,歩行者,道路交通のサイクリスト,ETH-UCYなど,複数のデータセットで検証されている。
論文 参考訳(メタデータ) (2023-12-26T18:56:49Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
社会ナビゲーションは、ロボットのような自律的なエージェントが、人間のような他の知的エージェントの存在下で、社会的に従順な方法でナビゲートする能力である。
私たちのデータセットには8.7時間、128の軌道、25マイルの社会的に適合した人間の遠隔運転デモが含まれています。
論文 参考訳(メタデータ) (2022-03-28T19:09:11Z) - Socially and Contextually Aware Human Motion and Pose Forecasting [48.083060946226]
本研究では,人間の動作(あるいは骨格ポーズ)と体骨格のポーズ予測の両課題に対処するための新しい枠組みを提案する。
我々は,この予測課題における重要な手がかりとして,シーンと社会的文脈の両方を取り入れることを検討する。
提案手法は,2つのソーシャルデータセットのベースラインよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-07-14T06:12:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。