論文の概要: Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction
- arxiv url: http://arxiv.org/abs/2402.04768v2
- Date: Mon, 8 Apr 2024 15:43:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 01:16:32.397290
- Title: Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction
- Title(参考訳): 対人ロボットインタラクションのための社会運動予測に基づくロボットインタラクション行動生成
- Authors: Esteve Valls Mascaro, Yashuai Yan, Dongheui Lee,
- Abstract要約: 本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
- 参考スコア(独自算出の注目度): 9.806227900768926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating robots into populated environments is a complex challenge that requires an understanding of human social dynamics. In this work, we propose to model social motion forecasting in a shared human-robot representation space, which facilitates us to synthesize robot motions that interact with humans in social scenarios despite not observing any robot in the motion training. We develop a transformer-based architecture called ECHO, which operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios. Contrary to prior works, we reformulate the social motion problem as the refinement of the predicted individual motions based on the surrounding agents, which facilitates the training while allowing for single-motion forecasting when only one human is in the scene. We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin while being efficient and performing in real-time. Additionally, our qualitative results showcase the effectiveness of our approach in generating human-robot interaction behaviors that can be controlled via text commands. Webpage: https://evm7.github.io/ECHO/
- Abstract(参考訳): ロボットを人口の多い環境に統合することは、人間の社会的ダイナミクスを理解する必要がある複雑な課題である。
本研究では,ロボットの動作訓練においてロボットを観察することなく,人間と対話するロボットの動きを合成し,共有ロボット表現空間における社会的動き予測をモデル化することを提案する。
社会シナリオで遭遇したエージェントの将来の動きを予測するために,前述の共有空間で動作するECHOと呼ばれるトランスフォーマーベースのアーキテクチャを開発した。
先行研究とは対照的に,社会運動問題を周囲のエージェントに基づいて予測された個々の動作の洗練として再構成し,一人の人間だけが現場にいる場合の単一動作予測を可能にしながら,トレーニングを容易にする。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,実時間での効率と性能を両立させながら,最先端の性能を高いマージンで獲得する。
さらに,本研究の定性的な結果から,テキストコマンドで制御可能な人間とロボットのインタラクション行動を生成する方法の有効性が示された。
Webページ: https://evm7.github.io/ECHO/
関連論文リスト
- Real-Time Dynamic Robot-Assisted Hand-Object Interaction via Motion Primitives [45.256762954338704]
本稿では,動的ロボット支援ハンドオブジェクトインタラクションに着目した物理HRIの強化手法を提案する。
我々はトランスフォーマーに基づくアルゴリズムを用いて、1枚のRGB画像から人間の手の動きをリアルタイムに3Dモデリングする。
ロボットのアクション実装は、継続的に更新された3Dハンドモデルを使用して動的に微調整される。
論文 参考訳(メタデータ) (2024-05-29T21:20:16Z) - Learning Multimodal Latent Dynamics for Human-Robot Interaction [19.803547418450236]
本稿では,ヒト-ヒトインタラクション(HHI)から協調型人間-ロボットインタラクション(HRI)を学習する方法を提案する。
本研究では,隠れマルコフモデル(HMM)を変分オートエンコーダの潜在空間として用いて,相互作用するエージェントの結合分布をモデル化するハイブリッドアプローチを考案する。
ユーザが私たちのメソッドを,より人間らしく,タイムリーで,正確なものと認識し,他のベースラインよりも高い優先度でメソッドをランク付けすることが分かりました。
論文 参考訳(メタデータ) (2023-11-27T23:56:59Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
本研究では,ロボットインタラクションポリシーを強化するために,強化学習を伴うマルチモーダルヒューマンロボットインタラクション(HRI)フレームワークを実証する。
目標は、ロボットがより自然で魅力的なHRIフレームワークを作れるように、このフレームワークを社会シナリオに適用することだ。
論文 参考訳(メタデータ) (2021-10-08T00:35:44Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z) - Affect-Driven Modelling of Robot Personality for Collaborative
Human-Robot Interactions [16.40684407420441]
協調的な相互作用は、人間の感情的行動のダイナミクスに適応するために社会ロボットを必要とする。
社会ロボットにおける人格駆動行動生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-14T16:34:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。