論文の概要: Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer
- arxiv url: http://arxiv.org/abs/2404.11361v1
- Date: Wed, 17 Apr 2024 13:18:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 13:54:57.141927
- Title: Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer
- Title(参考訳): 適応的畳み込み層を用いた医用画像分割性能の向上
- Authors: Seyed M. R. Modaresi, Aomar Osmani, Mohammadreza Razzazi, Abdelghani Chibani,
- Abstract要約: UCTransNetのような先進的なディープラーニングモデルに先立つ適応層を提案する。
我々のアプローチは、多様な解剖学的構造と微妙な画像の詳細を扱うネットワークの能力を高める。
従来のCNNよりも、同じ数のパラメータで固定されたカーネルサイズで一貫してパフォーマンスが向上している。
- 参考スコア(独自算出の注目度): 6.887244952811574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation plays a vital role in various clinical applications, enabling accurate delineation and analysis of anatomical structures or pathological regions. Traditional CNNs have achieved remarkable success in this field. However, they often rely on fixed kernel sizes, which can limit their performance and adaptability in medical images where features exhibit diverse scales and configurations due to variability in equipment, target sizes, and expert interpretations. In this paper, we propose an adaptive layer placed ahead of leading deep-learning models such as UCTransNet, which dynamically adjusts the kernel size based on the local context of the input image. By adaptively capturing and fusing features at multiple scales, our approach enhances the network's ability to handle diverse anatomical structures and subtle image details, even for recently performing architectures that internally implement intra-scale modules, such as UCTransnet. Extensive experiments are conducted on benchmark medical image datasets to evaluate the effectiveness of our proposal. It consistently outperforms traditional \glspl{CNN} with fixed kernel sizes with a similar number of parameters, achieving superior segmentation Accuracy, Dice, and IoU in popular datasets such as SegPC2021 and ISIC2018. The model and data are published in the open-source repository, ensuring transparency and reproducibility of our promising results.
- Abstract(参考訳): 医用画像のセグメンテーションは様々な臨床応用において重要な役割を担い、解剖学的構造や病理領域の正確な記述と分析を可能にする。
伝統的なCNNはこの分野で大きな成功を収めた。
しかし、それらはしばしば固定されたカーネルサイズに依存しており、機器のばらつき、ターゲットサイズ、専門家の解釈による様々なスケールと構成を示す医療画像のパフォーマンスと適応性を制限することができる。
本稿では,UCTransNetなどの先進的なディープラーニングモデルに先立って,入力画像の局所的コンテキストに基づいてカーネルサイズを動的に調整する適応層を提案する。
UCTransnetなどの大規模モジュールを内部的に実装した最近のアーキテクチャにおいても,多種多様な解剖学的構造や微妙な画像の処理能力の向上が図られている。
本提案の有効性を評価するため,医用画像データセットのベンチマーク実験を行った。
これは、SegPC2021やISIC2018などの一般的なデータセットにおいて、同じ数のパラメータで固定されたカーネルサイズで、セグメンテーション精度、Dice、IoUを一貫して上回る。
モデルとデータはオープンソースリポジトリに公開され、有望な結果の透明性と再現性を確保します。
関連論文リスト
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
医用画像領域で高解像度画像が好ましいのは、基礎となる方法の診断能力を大幅に向上させるためである。
医用画像セグメンテーションのための既存のディープラーニング技術のほとんどは、空間次元が小さい入力画像に最適化されており、高解像度画像では不十分である。
我々はTransResNetという並列処理アーキテクチャを提案し、TransformerとCNNを並列的に組み合わせ、マルチ解像度画像から特徴を独立して抽出する。
論文 参考訳(メタデータ) (2024-10-01T18:22:34Z) - Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
本稿では,種々の医用画像データセット間での伝達学習を伴う,事前訓練された深部畳み込みニューラルネットワークの使用の複雑さについて検討する。
固定特徴抽出器として事前訓練されたモデルを使用することで,データセットに関係なく性能が低下することを示す。
また、より深く複雑なアーキテクチャが必ずしも最高のパフォーマンスをもたらすとは限らないことも判明した。
論文 参考訳(メタデータ) (2024-08-30T04:51:19Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
単一ソースドメインの一般化は、より信頼性が高く一貫性のあるイメージセグメンテーションを現実の臨床環境にわたって約束する。
本稿では,テキストエンコーダ機能によって案内されるコントラスト学習機構を組み込むことで,テキスト情報を明確に活用する手法を提案する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
論文 参考訳(メタデータ) (2024-04-01T17:48:15Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
医用画像セグメンテーションのためのシンプルなUNet-Transformer(seUNet-Trans)モデルを提案する。
提案手法では,UNetモデルを特徴抽出器として設計し,入力画像から複数の特徴マップを生成する。
UNetアーキテクチャと自己認識機構を活用することで、我々のモデルはローカルとグローバルの両方のコンテキスト情報を保存するだけでなく、入力要素間の長距離依存関係をキャプチャできる。
論文 参考訳(メタデータ) (2023-10-16T01:13:38Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
Inception Large Kernel Attention (I-LKA) モジュールをベースとしたロバストなフレームワークを統合した新しい自己教師型アルゴリズム textbfS$3$-Net を提案する。
我々は、変形可能な畳み込みを積分成分として利用し、優れた物体境界定義のための歪み変形を効果的に捕捉し、デライン化する。
皮膚病変および肺臓器の分節タスクに関する実験結果から,SOTA法と比較して,本手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-08-31T21:28:46Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Spatially Dependent U-Nets: Highly Accurate Architectures for Medical
Imaging Segmentation [10.77039660100327]
解剖学的構造に固有の空間的コヒーレンスを利用する新しいディープニューラルネットワークアーキテクチャを紹介します。
提案手法は,分割画素/ボクセル空間における長距離空間依存性を捉えるのに有効である。
本手法は一般的に使用されるU-NetおよびU-Net++アーキテクチャに好適に作用する。
論文 参考訳(メタデータ) (2021-03-22T10:37:20Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。