論文の概要: Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI
- arxiv url: http://arxiv.org/abs/2404.11428v1
- Date: Wed, 17 Apr 2024 14:34:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 13:45:11.992149
- Title: Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI
- Title(参考訳): 深層学習とXAIを用いた胸部X線画像からの肺疾患分類
- Authors: Tanzina Taher Ifty, Saleh Ahmed Shafin, Shoeb Mohammad Shahriar, Tashfia Towhid,
- Abstract要約: この研究は、異なる肺疾患をウイルス性肺炎、細菌性肺炎、COVID、結核、正常肺の5つのグループに分類することに焦点を当てている。
CNN、ハイブリッドモデル、アンサンブル、トランスフォーマー、Big Transferなど、さまざまなモデルを調査します。
注目すべきは、Xceptionモデルは5倍のクロスバリデーションによって微調整され、96.21%の精度を達成することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung diseases remain a critical global health concern, and it's crucial to have accurate and quick ways to diagnose them. This work focuses on classifying different lung diseases into five groups: viral pneumonia, bacterial pneumonia, COVID, tuberculosis, and normal lungs. Employing advanced deep learning techniques, we explore a diverse range of models including CNN, hybrid models, ensembles, transformers, and Big Transfer. The research encompasses comprehensive methodologies such as hyperparameter tuning, stratified k-fold cross-validation, and transfer learning with fine-tuning.Remarkably, our findings reveal that the Xception model, fine-tuned through 5-fold cross-validation, achieves the highest accuracy of 96.21\%. This success shows that our methods work well in accurately identifying different lung diseases. The exploration of explainable artificial intelligence (XAI) methodologies further enhances our understanding of the decision-making processes employed by these models, contributing to increased trust in their clinical applications.
- Abstract(参考訳): 肺疾患は依然として重要な世界的な健康上の問題であり、正確な診断方法と迅速な診断方法を持つことが重要です。
この研究は、異なる肺疾患をウイルス性肺炎、細菌性肺炎、COVID、結核、正常肺の5つのグループに分類することに焦点を当てている。
高度なディープラーニング技術を活用して、CNN、ハイブリッドモデル、アンサンブル、トランスフォーマー、Big Transferなど、さまざまなモデルを調査します。
本研究は,超パラメータチューニング,階層化k-フォルダクロスバリデーション,微調整によるトランスファーラーニングなどの包括的手法を網羅し,Xceptionモデルが5-フォルダクロスバリデーションにより微調整され,96.21\%の精度が得られることを示した。
この成功は、我々の方法が異なる肺疾患を正確に識別するのに役立つことを示している。
説明可能な人工知能(XAI)手法の探索により、これらのモデルが採用する意思決定プロセスの理解がさらに深まり、臨床応用への信頼が高まります。
関連論文リスト
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
肺がんはがんの診断の主要な原因の1つであり、世界中でがん関連死亡の原因となっている。
肺結節の分節は、悪性病変と良性病変の区別において、医師を支援する上で重要な役割を担っている。
本稿では,CT画像における肺結節のセグメンテーションモデルを導入し,セグメンテーションと分類プロセスを統合する深層学習フレームワークを活用する。
論文 参考訳(メタデータ) (2024-10-26T11:58:12Z) - Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
肺がんは世界中で致死率と死亡率の主要な原因の1つである。
コンピュータ支援診断システム(CAD)は肺結節の検出と分類に有効であることが証明されている。
深層学習アルゴリズムは肺結節解析の精度と効率を大幅に改善した。
論文 参考訳(メタデータ) (2024-10-18T17:45:42Z) - SynthEnsemble: A Fusion of CNN, Vision Transformer, and Hybrid Models for Multi-Label Chest X-Ray Classification [0.6218519716921521]
我々は,異なる疾患に対応する胸部X線パターンの同定に深層学習技術を採用している。
最も優れた個人モデルはCoAtNetで、受信機の動作特性曲線(AUROC)の84.2%の領域を達成した。
論文 参考訳(メタデータ) (2023-11-13T21:07:07Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Leveraging object detection for the identification of lung cancer [0.15229257192293202]
YOLOv5モデルは、がん性肺病変を検出するアルゴリズムの訓練に使用された。
訓練されたYOLOv5モデルは、肺癌の病変を同定し、高い精度とリコール率を示した。
論文 参考訳(メタデータ) (2023-05-25T07:53:18Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
本稿では,素因果関係を排除し,正確な因果表現を得るための解釈可能な機器変数(IV)学習フレームワークを提案する。
提案手法の性能はMIMIC-CXR,NIH ChestX-ray 14,CheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-05-20T03:12:23Z) - Advancement of Deep Learning in Pneumonia and Covid-19 Classification
and Localization: A Qualitative and Quantitative Analysis [1.7513645771137178]
肺炎(合併症+胸部X線)とコビッド19(RT-PCR)は、専門の放射線医と時間を必要とする。
ディープラーニングモデルの助けを借りて、肺炎とコビッド19は、胸部X線やCTスキャンから即座に検出できる。
論文 参考訳(メタデータ) (2021-11-16T16:40:39Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。