Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI
- URL: http://arxiv.org/abs/2404.11428v1
- Date: Wed, 17 Apr 2024 14:34:35 GMT
- Title: Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI
- Authors: Tanzina Taher Ifty, Saleh Ahmed Shafin, Shoeb Mohammad Shahriar, Tashfia Towhid,
- Abstract summary: This work focuses on classifying different lung diseases into five groups: viral pneumonia, bacterial pneumonia, COVID, tuberculosis, and normal lungs.
We explore a diverse range of models including CNN, hybrid models, ensembles, transformers, and Big Transfer.
Remarkably, the Xception model, fine-tuned through 5-fold cross-validation, achieves the highest accuracy of 96.21%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung diseases remain a critical global health concern, and it's crucial to have accurate and quick ways to diagnose them. This work focuses on classifying different lung diseases into five groups: viral pneumonia, bacterial pneumonia, COVID, tuberculosis, and normal lungs. Employing advanced deep learning techniques, we explore a diverse range of models including CNN, hybrid models, ensembles, transformers, and Big Transfer. The research encompasses comprehensive methodologies such as hyperparameter tuning, stratified k-fold cross-validation, and transfer learning with fine-tuning.Remarkably, our findings reveal that the Xception model, fine-tuned through 5-fold cross-validation, achieves the highest accuracy of 96.21\%. This success shows that our methods work well in accurately identifying different lung diseases. The exploration of explainable artificial intelligence (XAI) methodologies further enhances our understanding of the decision-making processes employed by these models, contributing to increased trust in their clinical applications.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
Lung cancer remains one of the leading causes of morbidity and mortality worldwide.
Computer-aided diagnosis (CAD) systems have proven effective in detecting and classifying pulmonary nodules.
Deep learning algorithms have markedly improved the accuracy and efficiency of pulmonary nodule analysis.
arXiv Detail & Related papers (2024-10-18T17:45:42Z) - SynthEnsemble: A Fusion of CNN, Vision Transformer, and Hybrid Models for Multi-Label Chest X-Ray Classification [0.6218519716921521]
We employ deep learning techniques to identify patterns in chest X-rays that correspond to different diseases.
The best individual model was the CoAtNet, which achieved an area under the receiver operating characteristic curve (AUROC) of 84.2%.
arXiv Detail & Related papers (2023-11-13T21:07:07Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Leveraging object detection for the identification of lung cancer [0.15229257192293202]
The YOLOv5 model was employed to train an algorithm capable of detecting cancerous lung lesions.
The trained YOLOv5 model exhibited exceptional proficiency in identifying lung cancer lesions, displaying high accuracy and recall rates.
arXiv Detail & Related papers (2023-05-25T07:53:18Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
We propose an interpretable instrumental variable (IV) learning framework to eliminate the spurious association and obtain accurate causal representation.
Our approach's performance is demonstrated using the MIMIC-CXR, NIH ChestX-ray 14, and CheXpert datasets.
arXiv Detail & Related papers (2023-05-20T03:12:23Z) - Advancement of Deep Learning in Pneumonia and Covid-19 Classification
and Localization: A Qualitative and Quantitative Analysis [1.7513645771137178]
pneumonia (complaints + chest X-ray) and covid-19 (RT-PCR) require the presence of expert radiologists and time.
With the help of Deep Learning models, pneumonia and covid-19 can be detected instantly from Chest X-rays or CT scans.
arXiv Detail & Related papers (2021-11-16T16:40:39Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.