Leveraging object detection for the identification of lung cancer
- URL: http://arxiv.org/abs/2305.15813v1
- Date: Thu, 25 May 2023 07:53:18 GMT
- Title: Leveraging object detection for the identification of lung cancer
- Authors: Karthick Prasad Gunasekaran
- Abstract summary: The YOLOv5 model was employed to train an algorithm capable of detecting cancerous lung lesions.
The trained YOLOv5 model exhibited exceptional proficiency in identifying lung cancer lesions, displaying high accuracy and recall rates.
- Score: 0.15229257192293202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung cancer poses a significant global public health challenge, emphasizing
the importance of early detection for improved patient outcomes. Recent
advancements in deep learning algorithms have shown promising results in
medical image analysis. This study aims to explore the application of object
detection particularly YOLOv5, an advanced object identification system, in
medical imaging for lung cancer identification. To train and evaluate the
algorithm, a dataset comprising chest X-rays and corresponding annotations was
obtained from Kaggle. The YOLOv5 model was employed to train an algorithm
capable of detecting cancerous lung lesions. The training process involved
optimizing hyperparameters and utilizing augmentation techniques to enhance the
model's performance. The trained YOLOv5 model exhibited exceptional proficiency
in identifying lung cancer lesions, displaying high accuracy and recall rates.
It successfully pinpointed malignant areas in chest radiographs, as validated
by a separate test set where it outperformed previous techniques. Additionally,
the YOLOv5 model demonstrated computational efficiency, enabling real-time
detection and making it suitable for integration into clinical procedures. This
proposed approach holds promise in assisting radiologists in the early
discovery and diagnosis of lung cancer, ultimately leading to prompt treatment
and improved patient outcomes.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
Lung cancer remains one of the leading causes of morbidity and mortality worldwide.
Computer-aided diagnosis (CAD) systems have proven effective in detecting and classifying pulmonary nodules.
Deep learning algorithms have markedly improved the accuracy and efficiency of pulmonary nodule analysis.
arXiv Detail & Related papers (2024-10-18T17:45:42Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI [0.0]
This work focuses on classifying different lung diseases into five groups: viral pneumonia, bacterial pneumonia, COVID, tuberculosis, and normal lungs.
We explore a diverse range of models including CNN, hybrid models, ensembles, transformers, and Big Transfer.
Remarkably, the Xception model, fine-tuned through 5-fold cross-validation, achieves the highest accuracy of 96.21%.
arXiv Detail & Related papers (2024-04-17T14:34:35Z) - Histopathologic Cancer Detection [0.0]
This work uses the PatchCamelyon benchmark datasets and trains them in a multi-layer perceptron and convolution model to observe the model's performance in terms of precision Recall, F1 Score, Accuracy, and AUC Score.
Also, this paper introduced ResNet50 and InceptionNet models with data augmentation, where ResNet50 is able to beat the state-of-the-art model.
arXiv Detail & Related papers (2023-11-13T19:51:46Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images [9.525711971667679]
Lung cancer is the leading cause of cancer death worldwide.
Deep learning techniques are effective at automatically diagnosing lung cancer.
These techniques have yet to be clinically approved and adopted by the medical community.
arXiv Detail & Related papers (2020-12-10T04:11:59Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.