Variational Bayesian Last Layers
- URL: http://arxiv.org/abs/2404.11599v1
- Date: Wed, 17 Apr 2024 17:50:24 GMT
- Title: Variational Bayesian Last Layers
- Authors: James Harrison, John Willes, Jasper Snoek,
- Abstract summary: We introduce a deterministic variational formulation for training Bayesian last layer neural networks.
This yields a sampling-free, single-pass model and loss that effectively improves uncertainty estimation.
We experimentally investigate VBLLs, and show that they improve predictive accuracy, calibration, and out of distribution detection over baselines.
- Score: 14.521406172240845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a deterministic variational formulation for training Bayesian last layer neural networks. This yields a sampling-free, single-pass model and loss that effectively improves uncertainty estimation. Our variational Bayesian last layer (VBLL) can be trained and evaluated with only quadratic complexity in last layer width, and is thus (nearly) computationally free to add to standard architectures. We experimentally investigate VBLLs, and show that they improve predictive accuracy, calibration, and out of distribution detection over baselines across both regression and classification. Finally, we investigate combining VBLL layers with variational Bayesian feature learning, yielding a lower variance collapsed variational inference method for Bayesian neural networks.
Related papers
- Multivariate Bayesian Last Layer for Regression: Uncertainty Quantification and Disentanglement [4.137574627759939]
We present new Bayesian Last Layer models in the setting of multivariate regression under heteroscedastic noise.
We propose an optimization algorithm for parameter learning.
We show that the framework can be used to transfer a canonically trained deep neural network to new data domains with uncertainty-aware capability.
arXiv Detail & Related papers (2024-05-02T21:53:32Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
We introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples.
A collapsed sample represents uncountably many models drawn from the approximate posterior.
Our proposed use of collapsed samples achieves a balance between scalability and accuracy.
arXiv Detail & Related papers (2023-06-16T08:34:42Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Variational Laplace for Bayesian neural networks [33.46810568687292]
We develop variational Laplace for Bayesian neural networks (BNNs)
We exploit a local approximation of the curvature of the likelihood to estimate the ELBO without the need for sampling the neural-network weights.
We show that early-stopping can be avoided by increasing the learning rate for the variance parameters.
arXiv Detail & Related papers (2020-11-20T15:16:18Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling [3.077929914199468]
We show that modifying the sampling distributions for dropout layers in neural networks improves the quality of uncertainty estimation.
Our main idea consists of two main steps: computing data-driven correlations between neurons and generating samples, which include maximally diverse neurons.
arXiv Detail & Related papers (2020-03-06T15:20:04Z) - Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [65.24701908364383]
We show that a sufficient condition for a uncertainty on a ReLU network is "to be a bit Bayesian calibrated"
We further validate these findings empirically via various standard experiments using common deep ReLU networks and Laplace approximations.
arXiv Detail & Related papers (2020-02-24T08:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.