論文の概要: Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms
- arxiv url: http://arxiv.org/abs/2404.11663v1
- Date: Wed, 17 Apr 2024 18:01:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 20:10:25.530838
- Title: Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms
- Title(参考訳): 中性原子に対する最適測定自由およびフォールトトレラント量子誤差補正
- Authors: Stefano Veroni, Markus Müller, Giacomo Giudice,
- Abstract要約: 量子誤り訂正(QEC)を行う上での大きな課題は、信頼性のある測定と条件付きフィードフォワード演算を実装することである。
本稿では,回路レベルのノイズに対する耐故障性を有する小型計測自由QEC方式の実装を提案する。
我々は,この手法が,中性原子配列上での資源効率の高い測定自由QECの実現への道を開く方法を強調した。
- 参考スコア(独自算出の注目度): 1.4767596539913115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major challenge in performing quantum error correction (QEC) is implementing reliable measurements and conditional feed-forward operations. In quantum computing platforms supporting unconditional qubit resets, or a constant supply of fresh qubits, alternative schemes which do not require measurements are possible. In such schemes, the error correction is realized via crafted coherent quantum feedback. We propose implementations of small measurement-free QEC schemes, which are fault-tolerant to circuit-level noise. These implementations are guided by several heuristics to achieve fault-tolerance: redundant syndrome information is extracted, and additional single-shot flag qubits are used. By carefully designing the circuit, the additional overhead of these measurement-free schemes is moderate compared to their conventional measurement-and-feed-forward counterparts. We highlight how this alternative approach paves the way towards implementing resource-efficient measurement-free QEC on neutral-atom arrays.
- Abstract(参考訳): 量子誤り訂正(QEC)を行う上での大きな課題は、信頼性のある測定と条件付きフィードフォワード演算を実装することである。
非条件量子ビットリセットをサポートする量子コンピューティングプラットフォームや、新鮮な量子ビットの一定供給では、測定を必要としない代替スキームが可能である。
このようなスキームでは、誤差補正はクラフトコヒーレントな量子フィードバックによって実現される。
本稿では,回路レベルのノイズに対する耐故障性を有する小型計測自由QEC方式の実装を提案する。
これらの実装は、フォールトトレランスを達成するために複数のヒューリスティックによってガイドされる:冗長なシンドローム情報を抽出し、追加のシングルショットフラグキュービットを使用する。
回路を慎重に設計することにより、これらの計測不要スキームの追加オーバーヘッドは、従来の計測・フィードフォワード方式に比べて中程度である。
我々は,この手法が,中性原子配列上での資源効率の高い測定自由QECの実現への道を開く方法を強調した。
関連論文リスト
- Measuring error rates of mid-circuit measurements [0.0]
そこで本研究では,マルチキュービット回路における中間回路計測による誤差発生率を計測する最初のベンチマークプロトコルを提案する。
我々は、20量子ビットの量子コンピュータにおいて、未検出の測定によるクロストークを検出し、排除する。
動的デカップリングにより、そのエラーのどれだけを除去するかを定量化する。
論文 参考訳(メタデータ) (2024-10-22T05:22:43Z) - Robust projective measurements through measuring code-inspired
observables [8.339831319589134]
本稿では,コードインスパイアされた可観測物を測定することで,頑健な射影計測を実現する手法を提案する。
古典的なコードが$t$エラーを修正すれば、オブザーバブルの測定の古典的な結果に対して$t$エラーを修正できます。
提案手法は任意の射影型POVMに対して有効であり,非安定化量子誤り訂正符号におけるロバストシンドローム抽出を許容できる。
論文 参考訳(メタデータ) (2024-02-06T15:49:34Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Virtual quantum error detection [0.17999333451993949]
仮想量子誤り検出(VQED)と呼ばれるプロトコルを提案する。
VQEDは事実上、量子エラー検出によって得られるポストセレクトされた量子状態に対応する計算結果を評価することができる。
いくつかの単純な誤差モデルでは、VQEDを用いて得られた結果は、VQEDの動作中に発生するノイズに対して頑健である。
論文 参考訳(メタデータ) (2023-02-06T08:52:50Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
正準離散量子誤差補正(DQEC)スキームは、安定器上の射影フォン・ノイマン測度を用いて誤差症候群を有限集合に識別する。
連続的量子誤差補正(CQEC)と呼ばれる連続的な測定に基づく量子エラー補正(QEC)は、DQECよりも高速に実行でき、資源効率も向上できる。
論理量子ビットの計測に基づく推定器 (MBE) を構築することにより, 物理量子ビットに発生する誤差をリアルタイムで正確に追跡できることを示す。
論文 参考訳(メタデータ) (2022-03-25T09:07:18Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Error mitigation via stabilizer measurement emulation [0.0]
量子計測エミュレーション(QQME)を導入し、実証する。
QQMEはゲート応用による安定化作用素の測定を効果的にエミュレートし、コヒーレントエラーに対する1次不感度をもたらす。
特にDDに対処することが難しい離散コヒーレントエラーには適しています。
論文 参考訳(メタデータ) (2021-02-10T22:58:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。