Empowering Working Memory for Large Language Model Agents
- URL: http://arxiv.org/abs/2312.17259v2
- Date: Tue, 28 May 2024 05:34:52 GMT
- Title: Empowering Working Memory for Large Language Model Agents
- Authors: Jing Guo, Nan Li, Jianchuan Qi, Hang Yang, Ruiqiao Li, Yuzhen Feng, Si Zhang, Ming Xu,
- Abstract summary: This paper explores the potential of applying cognitive psychology's working memory frameworks to large language models (LLMs)
An innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes.
This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios.
- Score: 9.83467478231344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved impressive linguistic capabilities. However, a key limitation persists in their lack of human-like memory faculties. LLMs exhibit constrained memory retention across sequential interactions, hindering complex reasoning. This paper explores the potential of applying cognitive psychology's working memory frameworks, to enhance LLM architecture. The limitations of traditional LLM memory designs are analyzed, including their isolation of distinct dialog episodes and lack of persistent memory links. To address this, an innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes. This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios. While promising, further research is required into optimizing episodic memory encoding, storage, prioritization, retrieval, and security. Overall, this paper provides a strategic blueprint for developing LLM agents with more sophisticated, human-like memory capabilities, highlighting memory mechanisms as a vital frontier in artificial general intelligence.
Related papers
- From Human Memory to AI Memory: A Survey on Memory Mechanisms in the Era of LLMs [34.361000444808454]
Memory is the process of encoding, storing, and retrieving information.
In the era of large language models (LLMs), memory refers to the ability of an AI system to retain, recall, and use information from past interactions to improve future responses and interactions.
arXiv Detail & Related papers (2025-04-22T15:05:04Z) - Cognitive Memory in Large Language Models [8.059261857307881]
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency.
It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures.
arXiv Detail & Related papers (2025-04-03T09:58:19Z) - In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents [70.12342024019044]
Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information limits their effectiveness.
We propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections.
RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.
arXiv Detail & Related papers (2025-03-11T04:15:52Z) - Position: Episodic Memory is the Missing Piece for Long-Term LLM Agents [43.94686139164999]
We present an episodic memory framework for Large Language Models (LLMs) agents, centered around five key properties of episodic memory.
This position paper argues that now is the right time for an explicit, integrated focus on episodic memory to catalyze the development of long-term agents.
arXiv Detail & Related papers (2025-02-10T19:14:51Z) - Episodic Memories Generation and Evaluation Benchmark for Large Language Models [7.660368798066376]
We argue that integrating episodic memory capabilities into Large Language Models is essential for advancing AI towards human-like cognition.
We develop a structured approach to represent episodic events, encapsulating temporal and spatial contexts, involved entities, and detailed descriptions.
We synthesize a unique episodic memory benchmark, free from contamination, and release open source code and datasets to assess LLM performance.
arXiv Detail & Related papers (2025-01-21T02:16:13Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - $\text{Memory}^3$: Language Modeling with Explicit Memory [22.572376536612015]
We equip large language models (LLMs) with explicit memory, a memory format cheaper than model parameters and text retrieval-augmented generation (RAG)
As a preliminary proof of concept, we train from scratch a 2.4B LLM, which achieves better performance than much larger LLMs and RAG models.
We introduce a memory circuitry theory to support the externalization of knowledge, and present novel techniques including a memory sparsification mechanism that makes storage tractable.
arXiv Detail & Related papers (2024-07-01T11:07:23Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
We introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent)
It incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation.
The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated.
arXiv Detail & Related papers (2024-06-09T21:58:32Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities.
LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems.
The key component to support agent-environment interactions is the memory of the agents.
arXiv Detail & Related papers (2024-04-21T01:49:46Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
We introduce MemLLM, a novel method of enhancing knowledge capabilities by integrating a structured and explicit read-and-write memory module.
Our experiments indicate that MemLLM enhances performance and interpretability, in language modeling general and in particular.
We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
arXiv Detail & Related papers (2024-04-17T18:13:16Z) - Saliency-Guided Hidden Associative Replay for Continual Learning [13.551181595881326]
Continual Learning is a burgeoning domain in next-generation AI, focusing on training neural networks over a sequence of tasks akin to human learning.
This paper presents the Saliency Guided Hidden Associative Replay for Continual Learning.
This novel framework synergizes associative memory with replay-based strategies. SHARC primarily archives salient data segments via sparse memory encoding.
arXiv Detail & Related papers (2023-10-06T15:54:12Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - MemoryBank: Enhancing Large Language Models with Long-Term Memory [7.654404043517219]
We propose MemoryBank, a novel memory mechanism tailored for Large Language Models.
MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user personality by synthesizing information from past interactions.
arXiv Detail & Related papers (2023-05-17T14:40:29Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.
We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.