MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
- URL: http://arxiv.org/abs/2404.11672v2
- Date: Thu, 09 Jan 2025 17:18:12 GMT
- Title: MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
- Authors: Ali Modarressi, Abdullatif Köksal, Ayyoob Imani, Mohsen Fayyaz, Hinrich Schütze,
- Abstract summary: We introduce MemLLM, a novel method of enhancing large language models (LLMs) by integrating a structured and explicit read-and-write memory module.<n>Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular.
- Score: 49.96019697955383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While current large language models (LLMs) perform well on many knowledge-related tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with memorizing rare events and with updating their memory as facts change over time. In addition, the uninterpretable nature of parametric memory makes it challenging to prevent hallucination. Model editing and augmenting LLMs with parameters specialized for memory are only partial solutions. In this paper, we introduce MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-and-write memory module. MemLLM tackles the aforementioned challenges by enabling dynamic interaction with the memory and improving the LLM's capabilities in using stored knowledge. Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular. We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
Related papers
- Memorization and Knowledge Injection in Gated LLMs [8.305942415868042]
Large Language Models (LLMs) currently struggle to sequentially add new memories and integrate new knowledge.
Memory Embedded in Gated LLMs (MEGa) injects event memories directly into the weights of LLMs.
During inference, a gating mechanism activates relevant memory weights by matching query embeddings to stored memory embeddings.
arXiv Detail & Related papers (2025-04-30T00:28:32Z) - Assessing Episodic Memory in LLMs with Sequence Order Recall Tasks [42.22616978679253]
We introduce Sequence Order Recall Tasks (SORT), which we adapt from tasks used to study episodic memory in cognitive psychology.
SORT requires LLMs to recall the correct order of text segments, and provides a general framework that is both easily extendable and does not require any additional annotations.
Based on a human experiment with 155 participants, we show that humans can recall sequence order based on long-term memory of a book.
arXiv Detail & Related papers (2024-10-10T17:17:38Z) - $\text{Memory}^3$: Language Modeling with Explicit Memory [22.572376536612015]
We equip large language models (LLMs) with explicit memory, a memory format cheaper than model parameters and text retrieval-augmented generation (RAG)
As a preliminary proof of concept, we train from scratch a 2.4B LLM, which achieves better performance than much larger LLMs and RAG models.
We introduce a memory circuitry theory to support the externalization of knowledge, and present novel techniques including a memory sparsification mechanism that makes storage tractable.
arXiv Detail & Related papers (2024-07-01T11:07:23Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Larimar: Large Language Models with Episodic Memory Control [62.70727449128647]
Larimar is a brain-inspired architecture for enhancing Large Language Models with a distributed episodic memory.
Experimental results on multiple fact editing benchmarks demonstrate that Larimar attains accuracy comparable to most competitive baselines.
We provide mechanisms for selective fact forgetting, information leakage prevention, and input context length generalization with Larimar.
arXiv Detail & Related papers (2024-03-18T16:01:42Z) - Beyond Memorization: The Challenge of Random Memory Access in Language Models [56.525691003233554]
We investigate whether a generative Language Model (LM) is able to access its memory sequentially or randomly.
We find that techniques including recitation and permutation improve the random memory access capability of LMs.
arXiv Detail & Related papers (2024-03-12T16:42:44Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [82.02369596879817]
Memory of Amortized Contexts (MAC) is an efficient and effective online adaptation framework for large language models.
We show how MAC can be combined with and improve the performance of popular alternatives such as retrieval augmented generations.
arXiv Detail & Related papers (2024-03-07T08:34:57Z) - CAMELoT: Towards Large Language Models with Training-Free Consolidated
Associative Memory [38.429707659685974]
Large Language Models (LLMs) struggle to handle long input sequences due to high memory and runtime costs.
We introduce an associative memory module which can be coupled to any pre-trained (frozen) attention-based LLM without re-training.
This architecture, which we call CAMELoT, demonstrates superior performance even with a tiny context window of 128 tokens.
arXiv Detail & Related papers (2024-02-21T01:00:17Z) - Empowering Working Memory for Large Language Model Agents [9.83467478231344]
This paper explores the potential of applying cognitive psychology's working memory frameworks to large language models (LLMs)
An innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes.
This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios.
arXiv Detail & Related papers (2023-12-22T05:59:00Z) - Augmenting Language Models with Long-Term Memory [142.04940250657637]
Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit.
We propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history.
arXiv Detail & Related papers (2023-06-12T15:13:39Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.
We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.