論文の概要: A Secure and Trustworthy Network Architecture for Federated Learning Healthcare Applications
- arxiv url: http://arxiv.org/abs/2404.11698v1
- Date: Wed, 17 Apr 2024 18:55:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 20:10:25.516925
- Title: A Secure and Trustworthy Network Architecture for Federated Learning Healthcare Applications
- Title(参考訳): フェデレーションラーニング医療アプリケーションのためのセキュアで信頼できるネットワークアーキテクチャ
- Authors: Antonio Boiano, Marco Di Gennaro, Luca Barbieri, Michele Carminati, Monica Nicoli, Alessandro Redondi, Stefano Savazzi, Albert Sund Aillet, Diogo Reis Santos, Luigi Serio,
- Abstract要約: Trustrokeプロジェクトは、FLを活用して、脳卒中予測で臨床医を支援することを目的としている。
本稿では,TRUSTroke FLネットワーク基盤の概要を紹介する。
- 参考スコア(独自算出の注目度): 37.91592941026672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as a promising approach for privacy-preserving machine learning, particularly in sensitive domains such as healthcare. In this context, the TRUSTroke project aims to leverage FL to assist clinicians in ischemic stroke prediction. This paper provides an overview of the TRUSTroke FL network infrastructure. The proposed architecture adopts a client-server model with a central Parameter Server (PS). We introduce a Docker-based design for the client nodes, offering a flexible solution for implementing FL processes in clinical settings. The impact of different communication protocols (HTTP or MQTT) on FL network operation is analyzed, with MQTT selected for its suitability in FL scenarios. A control plane to support the main operations required by FL processes is also proposed. The paper concludes with an analysis of security aspects of the FL architecture, addressing potential threats and proposing mitigation strategies to increase the trustworthiness level.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、特に医療などのセンシティブな分野において、プライバシ保護機械学習のための有望なアプローチとして登場した。
この文脈において、TRUSTrokeプロジェクトは、FLを活用して、虚血性脳卒中予測における臨床医を支援することを目的としている。
本稿では,TRUSTroke FLネットワーク基盤の概要を紹介する。
提案アーキテクチャでは,中央パラメータサーバ(PS)を備えたクライアントサーバモデルを採用している。
クライアントノードのためのDockerベースの設計を導入し、臨床環境でFLプロセスを実装するための柔軟なソリューションを提供します。
FLネットワーク操作に対する異なる通信プロトコル(HTTPまたはMQTT)の影響を分析し、FLシナリオにおける適合性のためにMQTTを選択した。
FLプロセスで要求される主動作をサポートする制御面も提案する。
本稿では、FLアーキテクチャのセキュリティ面の分析を行い、潜在的な脅威に対処し、信頼性を高めるための緩和戦略を提案する。
関連論文リスト
- Cooperation and Personalization on a Seesaw: Choice-based FL for Safe Cooperation in Wireless Networks [8.064072834606456]
Federated Learning (FL) は、革新的な分散人工知能技術である。
まず、FLを無線ネットワークに適用する際の利点と懸念について概説する。
選択に基づくアプローチで協調レベルを調整できる可能性について論じる。
論文 参考訳(メタデータ) (2024-11-06T14:09:47Z) - A Federated Learning Platform as a Service for Advancing Stroke Management in European Clinical Centers [37.285731240749904]
本稿では,FLプロセスの構成,監視,管理を支援するための新しいFLプラットフォームを提案する。
臨床環境に固有の生産感度を考慮し,提案するFLアーキテクチャの安全性を強調した。
このプラットフォームは、公開データセットを使用して、さまざまな運用環境でのテストに成功している。
論文 参考訳(メタデータ) (2024-10-02T09:24:05Z) - A Survey on Decentralized Federated Learning [0.709016563801433]
近年、フェデレーション学習は、分散、大規模、プライバシ保護機械学習(ML)システムのトレーニングにおいて一般的なパラダイムとなっている。
典型的なFLシステムでは、中央サーバはオーケストレータとしてのみ機能し、各クライアントによって訓練されたすべてのローカルモデルを、収束するまで反復的に収集し集約する。
最も重要な課題の1つは、古典的なFLクライアントサーバアーキテクチャの集中的なオーケストレーションを克服することである。
すべてのFLクライアントが中央サーバなしで協力し、通信する分散FLソリューションが登場しました。
論文 参考訳(メタデータ) (2023-08-08T22:07:15Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - ModularFed: Leveraging Modularity in Federated Learning Frameworks [8.139264167572213]
本稿では,フェデレートラーニング(FL)実装の複雑さに対処する研究に焦点を当てたフレームワークを提案する。
このアーキテクチャでは、プロトコルはフレームワークのコンポーネントの設計を厳密に定義する青写真である。
我々のプロトコルはFLにおけるモジュラリティの実現を目的としており、サードパーティのプラグイン・アンド・プレイアーキテクチャと動的シミュレータをサポートしています。
論文 参考訳(メタデータ) (2022-10-31T10:21:19Z) - Federated Learning: Applications, Challenges and Future Scopes [1.3190581566723918]
フェデレーション・ラーニング(Federated Learning, FL)とは、複数のクライアントが機械学習の問題を解決するために、中心的なアグリゲータが協調するシステムである。
FLは無線通信、サービスレコメンデーション、インテリジェント医療診断システム、医療に応用されている。
論文 参考訳(メタデータ) (2022-05-18T10:47:09Z) - Closing the Generalization Gap of Cross-silo Federated Medical Image
Segmentation [66.44449514373746]
クロスサイロ・フェデレーション・ラーニング (FL) は近年, 深層学習による医用画像解析において注目されている。
FLでトレーニングされたモデルと、集中的なトレーニングでトレーニングされたモデルの間にはギャップがある。
本稿では,クライアントの問題を回避し,ドリフトギャップを解消するための新しいトレーニングフレームワークであるFedSMを提案する。
論文 参考訳(メタデータ) (2022-03-18T19:50:07Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - FedComm: Federated Learning as a Medium for Covert Communication [56.376997104843355]
フェデレートラーニング(FL)は、ディープラーニングの採用に伴うプライバシーへの影響を軽減するためのソリューションである。
本稿では,FL方式の通信能力について詳しく検討する。
我々は,新しいマルチシステム被覆通信技術であるFedCommを紹介する。
論文 参考訳(メタデータ) (2022-01-21T17:05:56Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。