How often are errors in natural language reasoning due to paraphrastic variability?
- URL: http://arxiv.org/abs/2404.11717v1
- Date: Wed, 17 Apr 2024 20:11:32 GMT
- Title: How often are errors in natural language reasoning due to paraphrastic variability?
- Authors: Neha Srikanth, Marine Carpuat, Rachel Rudinger,
- Abstract summary: We propose a metric for evaluating the paraphrastic consistency of natural language reasoning models.
We mathematically connect this metric to the proportion of a model's variance in correctness attributable to paraphrasing.
We collect ParaNLU, a dataset of 7,782 human-written and validated paraphrased reasoning problems.
- Score: 29.079188032623605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have been shown to behave inconsistently in response to meaning-preserving paraphrastic inputs. At the same time, researchers evaluate the knowledge and reasoning abilities of these models with test evaluations that do not disaggregate the effect of paraphrastic variability on performance. We propose a metric for evaluating the paraphrastic consistency of natural language reasoning models based on the probability of a model achieving the same correctness on two paraphrases of the same problem. We mathematically connect this metric to the proportion of a model's variance in correctness attributable to paraphrasing. To estimate paraphrastic consistency, we collect ParaNLU, a dataset of 7,782 human-written and validated paraphrased reasoning problems constructed on top of existing benchmark datasets for defeasible and abductive natural language inference. Using ParaNLU, we measure the paraphrastic consistency of several model classes and show that consistency dramatically increases with pretraining but not finetuning. All models tested exhibited room for improvement in paraphrastic consistency.
Related papers
- QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios [15.193544498311603]
We present QUITE, a dataset of real-world Bayesian reasoning scenarios with categorical random variables and complex relationships.
We conduct an extensive set of experiments, finding that logic-based models outperform out-of-the-box large language models on all reasoning types.
Our results provide evidence that neuro-symbolic models are a promising direction for improving complex reasoning.
arXiv Detail & Related papers (2024-10-14T12:44:59Z) - CONTESTS: a Framework for Consistency Testing of Span Probabilities in Language Models [16.436592723426305]
It is unclear whether language models produce the same value for different ways of assigning joint probabilities to word spans.
Our work introduces a novel framework, ConTestS, involving statistical tests to assess score consistency across interchangeable completion and conditioning orders.
arXiv Detail & Related papers (2024-09-30T06:24:43Z) - Semantic Sensitivities and Inconsistent Predictions: Measuring the
Fragility of NLI Models [44.56781176879151]
State-of-the-art Natural Language Inference (NLI) models are sensitive towards minor semantics preserving surface-form variations.
We show that semantic sensitivity causes performance degradations of $12.92%$ and $23.71%$ average over $textbfin-$ and $textbfout-of-$ domain settings.
arXiv Detail & Related papers (2024-01-25T14:47:05Z) - Towards preserving word order importance through Forced Invalidation [80.33036864442182]
We show that pre-trained language models are insensitive to word order.
We propose Forced Invalidation to help preserve the importance of word order.
Our experiments demonstrate that Forced Invalidation significantly improves the sensitivity of the models to word order.
arXiv Detail & Related papers (2023-04-11T13:42:10Z) - A Causal Framework to Quantify the Robustness of Mathematical Reasoning
with Language Models [81.15974174627785]
We study the behavior of language models in terms of robustness and sensitivity to direct interventions in the input space.
Our analysis shows that robustness does not appear to continuously improve as a function of size, but the GPT-3 Davinci models (175B) achieve a dramatic improvement in both robustness and sensitivity compared to all other GPT variants.
arXiv Detail & Related papers (2022-10-21T15:12:37Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
We show that prompt-based models for sentence pair classification tasks still suffer from a common pitfall of adopting inferences based on lexical overlap.
We then show that adding a regularization that preserves pretraining weights is effective in mitigating this destructive tendency of few-shot finetuning.
arXiv Detail & Related papers (2021-09-09T10:10:29Z) - Measuring and Improving Consistency in Pretrained Language Models [40.46184998481918]
We study the question: Are Pretrained Language Models (PLMs) consistent with respect to factual knowledge?
Using ParaRel, we show that the consistency of all PLMs we experiment with is poor -- though with high variance between relations.
arXiv Detail & Related papers (2021-02-01T17:48:42Z) - Exploring Lexical Irregularities in Hypothesis-Only Models of Natural
Language Inference [5.283529004179579]
Natural Language Inference (NLI) or Recognizing Textual Entailment (RTE) is the task of predicting the entailment relation between a pair of sentences.
Models that understand entailment should encode both, the premise and the hypothesis.
Experiments by Poliak et al. revealed a strong preference of these models towards patterns observed only in the hypothesis.
arXiv Detail & Related papers (2021-01-19T01:08:06Z) - Unnatural Language Inference [48.45003475966808]
We find that state-of-the-art NLI models, such as RoBERTa and BART, are invariant to, and sometimes even perform better on, examples with randomly reordered words.
Our findings call into question the idea that our natural language understanding models, and the tasks used for measuring their progress, genuinely require a human-like understanding of syntax.
arXiv Detail & Related papers (2020-12-30T20:40:48Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
We propose a Causal Semantic Generative model (CSG) based on a causal reasoning so that the two factors are modeled separately.
We show that CSG can identify the semantic factor by fitting training data, and this semantic-identification guarantees the boundedness of OOD generalization error.
arXiv Detail & Related papers (2020-11-03T13:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.