論文の概要: Enhancing Argument Summarization: Prioritizing Exhaustiveness in Key Point Generation and Introducing an Automatic Coverage Evaluation Metric
- arxiv url: http://arxiv.org/abs/2404.11793v1
- Date: Wed, 17 Apr 2024 23:00:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 13:20:47.884904
- Title: Enhancing Argument Summarization: Prioritizing Exhaustiveness in Key Point Generation and Introducing an Automatic Coverage Evaluation Metric
- Title(参考訳): 調書要約の強化:キーポイント生成における発声の優先順位付けと自動被覆評価指標の導入
- Authors: Mohammad Khosravani, Chenyang Huang, Amine Trabelsi,
- Abstract要約: キーポイント分析(KPA)タスクは、引数の集合のまとめを表すものとして引数の要約を定式化する。
キーポイント生成(KPG)と呼ばれるKPAのサブタスクは、引数からこれらのキーポイントを生成することに焦点を当てている。
本稿では,キーポイント生成のための新しい抽出手法を提案する。
- 参考スコア(独自算出の注目度): 3.0754290232284562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of social media platforms has given rise to the amount of online debates and arguments. Consequently, the need for automatic summarization methods for such debates is imperative, however this area of summarization is rather understudied. The Key Point Analysis (KPA) task formulates argument summarization as representing the summary of a large collection of arguments in the form of concise sentences in bullet-style format, called key points. A sub-task of KPA, called Key Point Generation (KPG), focuses on generating these key points given the arguments. This paper introduces a novel extractive approach for key point generation, that outperforms previous state-of-the-art methods for the task. Our method utilizes an extractive clustering based approach that offers concise, high quality generated key points with higher coverage of reference summaries, and less redundant outputs. In addition, we show that the existing evaluation metrics for summarization such as ROUGE are incapable of differentiating between generated key points of different qualities. To this end, we propose a new evaluation metric for assessing the generated key points by their coverage. Our code can be accessed online.
- Abstract(参考訳): ソーシャルメディアプラットフォームの普及は、オンライン討論や議論の量を増やしている。
したがって、このような議論のための自動要約法の必要性は不可欠であるが、この要約の領域はむしろ検討されている。
キーポイント分析(KPA)タスクは、キーポイントと呼ばれる弾頭形式の簡潔な文の形式で、大量の引数の集合の要約を表すものとして、引数の要約を定式化する。
キーポイント生成(KPG)と呼ばれるKPAのサブタスクは、引数からこれらのキーポイントを生成することに焦点を当てている。
本稿では,キーポイント生成のための新しい抽出手法を提案する。
提案手法では,より簡潔で高品質なキーポイント,参照サマリーのカバレッジの向上,冗長な出力の少ない抽出クラスタリング方式を用いる。
また,ROUGEなどの既存の評価基準では,異なる品質の鍵点を区別できないことを示す。
そこで本研究では,生成したキーポイントをカバー範囲別に評価するための新しい評価指標を提案する。
私たちのコードはオンラインでアクセスできます。
関連論文リスト
- Exploring Key Point Analysis with Pairwise Generation and Graph Partitioning [61.73411954056032]
キーポイント分析(KPA)は、議論採掘の分野において重要な未解決問題であり続けている。
ペア生成とグラフ分割を併用したKPAの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-17T13:44:29Z) - Open-Vocabulary Animal Keypoint Detection with Semantic-feature Matching [74.75284453828017]
Open-Vocabulary Keypoint Detection (OVKD)タスクは、任意の種類のキーポイントを特定するためにテキストプロンプトを使用するように設計されている。
セマンティック・フェールマッチング(KDSM)を用いた開語彙キーポイント検出(Open-Vocabulary Keypoint Detection)という新しいフレームワークを開発した。
このフレームワークは視覚と言語モデルを組み合わせて、言語機能とローカルキーポイント視覚機能との相互作用を作成する。
論文 参考訳(メタデータ) (2023-10-08T07:42:41Z) - From Key Points to Key Point Hierarchy: Structured and Expressive
Opinion Summarization [9.567280503274226]
キーポイント分析(KPA)は、最近テキストコメントの集合からきめ細かい洞察を得るために提案されている。
与えられたキーポイントの集合を階層に整理するタスクを,その特異性に応じて導入する。
我々は、ビジネスおよび製品レビューのキーポイント階層の高品質なベンチマークデータセットであるThinkPを開発した。
論文 参考訳(メタデータ) (2023-06-06T16:45:44Z) - Do You Hear The People Sing? Key Point Analysis via Iterative Clustering
and Abstractive Summarisation [12.548947151123555]
議論の要約は有望だが、現在未調査の分野である。
キーポイント分析の主な課題の1つは、高品質なキーポイント候補を見つけることである。
キーポイントの評価は 自動的に生成された要約が 役に立つことを保証するのに 不可欠です
論文 参考訳(メタデータ) (2023-05-25T12:43:29Z) - KPEval: Towards Fine-Grained Semantic-Based Keyphrase Evaluation [69.57018875757622]
KPEvalは、参照合意、忠実性、多様性、有用性という4つの重要な側面からなる総合的な評価フレームワークである。
KPEvalを用いて、23のキーフレーズシステムを再評価し、確立されたモデル比較結果に盲点があることを発見した。
論文 参考訳(メタデータ) (2023-03-27T17:45:38Z) - Comparing Methods for Extractive Summarization of Call Centre Dialogue [77.34726150561087]
そこで本稿では,これらの手法を用いて呼の要約を生成し,客観的に評価することにより,実験的な比較を行った。
TopicSum と Lead-N は他の要約法よりも優れており,BERTSum は主観的評価と客観的評価の両方で比較的低いスコアを得た。
論文 参考訳(メタデータ) (2022-09-06T13:16:02Z) - Object Localization under Single Coarse Point Supervision [107.46800858130658]
本稿では,粗い点アノテーションを用いたPOL手法を提案する。
CPRは、ポイントバッグを構築し、セマンティック関連点を選択し、マルチインスタンス学習(MIL)を通してセマンティックセンターポイントを生成する。
このようにして、CPRは、粗い点監督の下で高性能オブジェクトローカライザのトレーニングを保証する、弱い制御された進化手順を定義する。
論文 参考訳(メタデータ) (2022-03-17T14:14:11Z) - Unsupervised Summarization for Chat Logs with Topic-Oriented Ranking and
Context-Aware Auto-Encoders [59.038157066874255]
本稿では,手動ラベル付きデータを用いずにチャット要約を行うrankaeという新しいフレームワークを提案する。
RankAEは、中心性と多様性に応じてトピックの発話を同時に選択するトピック指向のランキング戦略で構成されています。
消音自動エンコーダは、選択された発話に基づいて簡潔でコンテキスト情報に基づいた要約を生成するように設計されています。
論文 参考訳(メタデータ) (2020-12-14T07:31:17Z) - Quantitative Argument Summarization and Beyond: Cross-Domain Key Point
Analysis [17.875273745811775]
完全自動解析が可能なキーポイントの自動抽出法を開発した。
キーポイント解析の適用性は議論データを超えていることを実証する。
さらなる貢献は、引数対キーポイントマッチングモデルの詳細な評価である。
論文 参考訳(メタデータ) (2020-10-11T23:01:51Z) - From Arguments to Key Points: Towards Automatic Argument Summarization [17.875273745811775]
1トピックあたりのキーポイントの数は、たいていの場合、議論の大部分をカバーするのに十分であることを示す。
さらに、ドメインの専門家が事前にこれらのキーポイントを予測できることがわかりました。
論文 参考訳(メタデータ) (2020-05-04T16:24:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。