論文の概要: Establishing a Baseline for Gaze-driven Authentication Performance in VR: A Breadth-First Investigation on a Very Large Dataset
- arxiv url: http://arxiv.org/abs/2404.11798v1
- Date: Wed, 17 Apr 2024 23:33:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 19:50:54.538575
- Title: Establishing a Baseline for Gaze-driven Authentication Performance in VR: A Breadth-First Investigation on a Very Large Dataset
- Title(参考訳): VRにおける視線駆動認証性能のベースライン構築:超大規模データセットに関する第1報
- Authors: Dillon Lohr, Michael J. Proulx, Oleg Komogortsev,
- Abstract要約: 本稿では,9202人の視線記録のデータセットを用いて,視線駆動型認証性能のベースラインを確立する。
我々の主要な発見は、最先端の機械学習アーキテクチャと十分に大きなトレーニングデータセットによって駆動される場合、視線認証はFIDO標準で必要とされるように正確であることを示している。
- 参考スコア(独自算出の注目度): 10.645578300818498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper performs the crucial work of establishing a baseline for gaze-driven authentication performance to begin answering fundamental research questions using a very large dataset of gaze recordings from 9202 people with a level of eye tracking (ET) signal quality equivalent to modern consumer-facing virtual reality (VR) platforms. The size of the employed dataset is at least an order-of-magnitude larger than any other dataset from previous related work. Binocular estimates of the optical and visual axes of the eyes and a minimum duration for enrollment and verification are required for our model to achieve a false rejection rate (FRR) of below 3% at a false acceptance rate (FAR) of 1 in 50,000. In terms of identification accuracy which decreases with gallery size, we estimate that our model would fall below chance-level accuracy for gallery sizes of 148,000 or more. Our major findings indicate that gaze authentication can be as accurate as required by the FIDO standard when driven by a state-of-the-art machine learning architecture and a sufficiently large training dataset.
- Abstract(参考訳): 本稿では,9202人の視線追跡(ET)信号品質を現代消費者向けバーチャルリアリティ(VR)プラットフォームと同等とした非常に大規模な視線記録データセットを用いて,視線駆動型認証性能のベースラインを確立するための重要な作業を行う。
採用データセットのサイズは、少なくとも以前の関連する作業から得られた他のデータセットよりも大きくなっています。
本モデルでは,眼の視軸と視軸の両眼的推定値と,眼球運動の受入と検証に最低限の期間を要し,偽受容率(FAR)で3%未満の偽拒絶率(FRR)を5万分の1で達成する。
ギャラリーサイズとともに減少する識別精度については,ギャラリーサイズが148,000以上の場合,我々のモデルがチャンスレベルの精度を下回ると推定する。
我々の主要な発見は、最先端の機械学習アーキテクチャと十分に大きなトレーニングデータセットによって駆動される場合、視線認証はFIDO標準で必要とされるように正確であることを示している。
関連論文リスト
- HyperspectralViTs: General Hyperspectral Models for On-board Remote Sensing [21.192836739734435]
機械学習モデルによるハイパースペクトルデータのオンボード処理は、幅広いタスクに対して前例のない量の自律性を可能にする。
これにより早期警戒システムが可能となり、衛星の星座にまたがる自動スケジューリングなどの新機能が実現される可能性がある。
本研究では,高スペクトル次元のデータを用いたエンドツーエンドの学習を支援する,高速かつ正確な機械学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-22T17:59:55Z) - CLIPping the Deception: Adapting Vision-Language Models for Universal
Deepfake Detection [3.849401956130233]
広汎な深度検出のための最近の適応手法と組み合わせた事前学習型視覚言語モデル(VLM)の有効性について検討する。
ディープフェイク検出にCLIPを適用するために、単一のデータセット(ProGAN)のみを使用します。
シンプルで軽量なPrompt Tuningベースの適応戦略は、以前のSOTAアプローチよりも5.01% mAPと6.61%の精度で優れている。
論文 参考訳(メタデータ) (2024-02-20T11:26:42Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
超解像度と適応型軽量YOLOv5アーキテクチャを組み合わせた革新的なアプローチを提案する。
実験により,小型で密集した物体の検出において,モデルの性能が優れていることを示した。
論文 参考訳(メタデータ) (2024-01-26T05:50:58Z) - One-Shot Learning for Periocular Recognition: Exploring the Effect of
Domain Adaptation and Data Bias on Deep Representations [59.17685450892182]
広範に使用されているCNNモデルにおける深部表現の挙動をワンショット近視認識のための極端データ不足下で検討する。
我々は、バイオメトリックデータセットで訓練されたネットワークを数百万の画像で活用し、最先端の結果を改善した。
SIFTのような従来のアルゴリズムは、限られたデータでCNNより優れている。
論文 参考訳(メタデータ) (2023-07-11T09:10:16Z) - One Eye is All You Need: Lightweight Ensembles for Gaze Estimation with
Single Encoders [0.0]
本稿では,ResNet と Inception モデルアーキテクチャを実装した視線推定モデルを提案する。
軽量アーキテクチャを用いることで,モデルパラメータ数が非常に少ないGazeCaptureデータセット上で高い性能を実現する。
また,テストセットの右目画像の誤差も有意に小さく,将来の視線推定ツールの設計において重要である可能性が示唆された。
論文 参考訳(メタデータ) (2022-11-22T01:12:31Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
歩行ベンチマークにより、研究コミュニティは高性能歩行認識システムの訓練と評価を行うことができる。
GREWは、野生における歩行認識のための最初の大規模データセットである。
SPOSGaitはNASベースの最初の歩行認識モデルである。
論文 参考訳(メタデータ) (2022-05-05T14:57:39Z) - ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition [21.594641488685376]
我々は,視覚障害者のための教示可能な物体認識装置を実世界に適用したorbitデータセットとベンチマークを提案する。
データセットには、携帯電話で盲目/低視野の人が記録した486個のオブジェクトの3,822本のビデオが含まれている。
ベンチマークは現実的な、非常に挑戦的な認識問題を反映し、少数のショット、高変動条件に堅牢性の研究を推進するための豊富な遊び場を提供します。
論文 参考訳(メタデータ) (2021-04-08T15:32:01Z) - ETH-XGaze: A Large Scale Dataset for Gaze Estimation under Extreme Head
Pose and Gaze Variation [52.5465548207648]
ETH-XGazeは100万以上の高解像度画像からなる新しい視線推定データセットである。
我々のデータセットは、異なる頭部ポーズと視線角度で視線推定手法のロバスト性を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2020-07-31T04:15:53Z) - Towards End-to-end Video-based Eye-Tracking [50.0630362419371]
画像のみから視線を推定することは、観察不可能な人固有の要因のために難しい課題である。
本稿では,これらの意味的関係と時間的関係を明確に学習することを目的とした,新しいデータセットとアタッチメント手法を提案する。
視覚刺激からの情報と視線画像の融合が,文献に記録された人物と同じような性能を達成することにつながることを実証した。
論文 参考訳(メタデータ) (2020-07-26T12:39:15Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。