論文の概要: HyperspectralViTs: General Hyperspectral Models for On-board Remote Sensing
- arxiv url: http://arxiv.org/abs/2410.17248v2
- Date: Thu, 24 Oct 2024 15:06:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:52:23.171564
- Title: HyperspectralViTs: General Hyperspectral Models for On-board Remote Sensing
- Title(参考訳): HyperspectralViTs:オンボードリモートセンシングのための一般的なハイパースペクトルモデル
- Authors: Vít Růžička, Andrew Markham,
- Abstract要約: 機械学習モデルによるハイパースペクトルデータのオンボード処理は、幅広いタスクに対して前例のない量の自律性を可能にする。
これにより早期警戒システムが可能となり、衛星の星座にまたがる自動スケジューリングなどの新機能が実現される可能性がある。
本研究では,高スペクトル次元のデータを用いたエンドツーエンドの学習を支援する,高速かつ正確な機械学習アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 21.192836739734435
- License:
- Abstract: On-board processing of hyperspectral data with machine learning models would enable unprecedented amount of autonomy for a wide range of tasks, for example methane detection or mineral identification. This can enable early warning system and could allow new capabilities such as automated scheduling across constellations of satellites. Classical methods suffer from high false positive rates and previous deep learning models exhibit prohibitive computational requirements. We propose fast and accurate machine learning architectures which support end-to-end training with data of high spectral dimension without relying on hand-crafted products or spectral band compression preprocessing. We evaluate our models on two tasks related to hyperspectral data processing. With our proposed general architectures, we improve the F1 score of the previous methane detection state-of-the-art models by 27% on a newly created synthetic dataset and by 13% on the previously released large benchmark dataset. We also demonstrate that training models on the synthetic dataset improves performance of models finetuned on the dataset of real events by 6.9% in F1 score in contrast with training from scratch. On a newly created dataset for mineral identification, our models provide 3.5% improvement in the F1 score in contrast to the default versions of the models. With our proposed models we improve the inference speed by 85% in contrast to previous classical and deep learning approaches by removing the dependency on classically computed features. With our architecture, one capture from the EMIT sensor can be processed within 30 seconds on realistic proxy of the ION-SCV 004 satellite.
- Abstract(参考訳): 機械学習モデルによるハイパースペクトルデータのオンボード処理は、メタン検出やミネラル識別など、幅広いタスクに対して前例のない量の自律性を可能にする。
これにより早期警戒システムが可能となり、衛星の星座にまたがる自動スケジューリングなどの新機能が実現される可能性がある。
古典的手法は高い偽陽性率に悩まされ、従来のディープラーニングモデルは禁忌な計算要求を示す。
本研究では,手作り品やスペクトル帯域圧縮前処理に頼ることなく,高スペクトル次元のデータによるエンドツーエンドの学習を支援する,高速かつ正確な機械学習アーキテクチャを提案する。
我々は、ハイパースペクトルデータ処理に関連する2つのタスクについて、我々のモデルを評価する。
提案する汎用アーキテクチャでは,新たに生成された合成データセットでは27%,以前にリリースされた大規模ベンチマークデータセットでは13%,従来のメタン検出状態のF1スコアは27%向上する。
また、合成データセット上のトレーニングモデルにより、実イベントのデータセット上で微調整されたモデルの性能が、ゼロからのトレーニングと対照的にF1スコアの6.9%向上することが実証された。
新たに作成したミネラル識別データセットでは、モデルのデフォルトバージョンとは対照的に、F1スコアが3.5%改善されている。
提案したモデルでは,従来の古典的および深層学習手法と対照的に,古典的に計算された特徴への依存を取り除き,推論速度を85%向上させる。
我々のアーキテクチャでは、EMITセンサーからの1回のキャプチャは、ION-SCV 004衛星のリアルプロキシで30秒以内に処理できる。
関連論文リスト
- A Three-Phases SFT Hybrid Model Integrated Strong Prior Module and Data Overlap Estimation in the Eduation Context [0.0]
教師付き微調整モデルとして,エンド・ツー・エンドの3相モデルを提案する。
本モデルは,学習知識の構造的分解と漸進的指導によるアウトプットを実現する。
当社のモデルは,オープンソースモデルと比較して,コード能力の最先端性も達成している。
論文 参考訳(メタデータ) (2024-03-13T05:38:39Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
本稿では,大規模データに基づく基礎モデルの事前学習と微調整を効果的に行うための第1種フレームワークを提案する。
我々はこの枠組みを利用して、マルチスペクトル衛星画像の1TB以上を事前トレーニングしたトランスフォーマーベースの基礎モデルであるPrithviを開発した。
論文 参考訳(メタデータ) (2023-10-28T10:19:55Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
そこで本研究では,メモリから取得したクロスモーダルな情報を推論時に表現することで,その埋め込みを洗練できる視覚テキストモデルを提案する。
注目すべきことに、これは凍ったCLIPの上に軽量の単層核融合トランスを用いて行うことができる。
検索強化コントラスト訓練(RECO)がCLIPの性能を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-06-12T15:52:02Z) - Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How [62.467716468917224]
本稿では,最適事前学習モデルとハイパーパラメータを共同で探索し,微調整する手法を提案する。
本手法は,一連のデータセット上で,事前学習したモデルの性能に関する知識を伝達する。
得られたアプローチによって、新しいデータセットの正確な事前学習モデルを迅速に選択できることを実証的に実証する。
論文 参考訳(メタデータ) (2023-06-06T16:15:26Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
我々は、高度LIGO検出器のデータから過渡ノイズ信号(グリッチ)と重力波を分類する。
どちらも、Gravity Spyデータセットを使用して、スクラッチからトレーニングされた、教師付き学習アプローチのモデルを使用します。
また、擬似ラベルの自動生成による事前学習モデルの自己教師型アプローチについても検討する。
論文 参考訳(メタデータ) (2023-03-24T11:12:37Z) - Confidence-Guided Data Augmentation for Deep Semi-Supervised Training [0.9968241071319184]
特徴空間の最も困難な領域からの学習を強調する半教師付き学習設定のための新しいデータ拡張手法を提案する。
CIFAR-100とSTL-10の2つのベンチマークRGBデータセットを用いて実験を行い、提案手法が精度とロバスト性の観点から分類性能を向上させることを示す。
論文 参考訳(メタデータ) (2022-09-16T21:23:19Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
本研究では、FAST-DADを用いて、任意の複雑なアンサンブル予測を、高木、無作為林、深層ネットワークなどの個々のモデルに抽出する。
我々の個々の蒸留モデルは、H2O/AutoSklearnのようなAutoMLツールが生成するアンサンブル予測よりも10倍高速で精度が高い。
論文 参考訳(メタデータ) (2020-06-25T09:57:47Z) - Energy Predictive Models for Convolutional Neural Networks on Mobile
Platforms [0.0]
モバイルデバイスにディープラーニングモデルをデプロイする場合、エネルギー利用は重要な懸念事項である。
我々はJetson TX1とSnapdragon 820上に12の代表的なConvolutional NeuralNetworks(ConvNets)を用いて、完全な接続層とプール層のための層型予測モデルを構築した。
ハードウェアとソフトウェアの組み合わせによるテストConvNetの全体的なエネルギー予測において,精度は76%から85%,モデル複雑度は1。
論文 参考訳(メタデータ) (2020-04-10T17:35:40Z) - Forecasting Industrial Aging Processes with Machine Learning Methods [0.0]
我々は、従来のステートレスモデルとより複雑なリカレントニューラルネットワークを比較して、幅広いデータ駆動モデルを評価する。
以上の結果から,リカレントモデルでは,より大きなデータセットでトレーニングした場合,ほぼ完璧な予測が得られた。
論文 参考訳(メタデータ) (2020-02-05T13:06:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。