論文の概要: Computer-Aided Diagnosis of Thoracic Diseases in Chest X-rays using hybrid CNN-Transformer Architecture
- arxiv url: http://arxiv.org/abs/2404.11843v2
- Date: Fri, 19 Apr 2024 01:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 12:13:31.944324
- Title: Computer-Aided Diagnosis of Thoracic Diseases in Chest X-rays using hybrid CNN-Transformer Architecture
- Title(参考訳): ハイブリッドCNNトランスフォーマアーキテクチャを用いた胸部X線胸部疾患のコンピュータ診断
- Authors: Sonit Singh,
- Abstract要約: 自動コンピュータ支援診断システムは、胸部X線を解釈し、実行可能な洞察を提供することで、放射線科医を増強することができる。
本研究では,DenseNet121 Convolutional Neural Network(CNN)を付加した新しいアーキテクチャを適用した。
胸部X線による胸部疾患の診断において, 自己注意でCNNを増強する可能性が示唆された。
- 参考スコア(独自算出の注目度): 1.0878040851637998
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical imaging has been used for diagnosis of various conditions, making it one of the most powerful resources for effective patient care. Due to widespread availability, low cost, and low radiation, chest X-ray is one of the most sought after radiology examination for the diagnosis of various thoracic diseases. Due to advancements in medical imaging technologies and increasing patient load, current radiology workflow faces various challenges including increasing backlogs, working long hours, and increase in diagnostic errors. An automated computer-aided diagnosis system that can interpret chest X-rays to augment radiologists by providing actionable insights has potential to provide second opinion to radiologists, highlight relevant regions in the image, in turn expediting clinical workflow, reducing diagnostic errors, and improving patient care. In this study, we applied a novel architecture augmenting the DenseNet121 Convolutional Neural Network (CNN) with multi-head self-attention mechanism using transformer, namely SA-DenseNet121, that can identify multiple thoracic diseases in chest X-rays. We conducted experiments on four of the largest chest X-ray datasets, namely, ChestX-ray14, CheXpert, MIMIC-CXR-JPG, and IU-CXR. Experimental results in terms of area under the receiver operating characteristics (AUC-ROC) shows that augmenting CNN with self-attention has potential in diagnosing different thoracic diseases from chest X-rays. The proposed methodology has the potential to support the reading workflow, improve efficiency, and reduce diagnostic errors.
- Abstract(参考訳): 医療画像は様々な疾患の診断に使われており、効果的な患者医療のための最も強力な資源の1つである。
胸部X線検査は胸部疾患の診断において最も望まれる疾患の1つである。
医療画像技術の進歩と患者負荷の増加により、現在の放射線学のワークフローは、バックログの増加、長時間労働、診断エラーの増加など、様々な課題に直面している。
胸部X線を解析して放射線科医を増強できる自動コンピュータ支援診断システムにおいて、実行可能な洞察を提供することにより、放射線科医に第2の意見を与え、画像内の関連領域を強調し、臨床ワークフローを高速化し、診断エラーを低減し、患者のケアを改善する可能性がある。
本研究では, 胸部X線で複数の胸部疾患を同定できるトランスフォーマー, SA-DenseNet121を用いて, マルチヘッド自己保持機構を備えたDenseNet121 Convolutional Neural Network (CNN) を付加した新しいアーキテクチャを適用した。
胸部X線データセットのうち,ChestX-ray14,CheXpert,MIMIC-CXR-JPG,IU-CXRの4つの実験を行った。
AUC-ROCは, 胸部X線による胸部疾患の診断において, 自己注意でCNNを増強する可能性が示唆された。
提案手法は,読解ワークフローをサポートし,効率を向上し,診断誤差を低減することができる。
関連論文リスト
- Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
胸部X線(CXR)を低分解能で診断する上での課題について検討した。
高分解能CXRイメージングは、結節や不透明など、小さなが重要な異常を識別するために重要である。
本稿では,MLCAK(Multilevel Collaborative Attention Knowledge)法を提案する。
論文 参考訳(メタデータ) (2024-05-22T06:10:54Z) - Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
世界的な新型コロナウイルス危機下では、チェストX線(CXR)画像からの新型コロナウイルスの正確な診断が重要である。
並列アテンションブロックを用いた新しい多機能融合ネットワークを提案し、元のCXR画像とローカル位相特徴強調CXR画像をマルチスケールで融合する。
論文 参考訳(メタデータ) (2023-04-25T16:56:12Z) - Improving Chest X-Ray Classification by RNN-based Patient Monitoring [0.34998703934432673]
我々は、診断に関する情報がCNNに基づく画像分類モデルを改善する方法について分析する。
追加の患者履歴情報に基づいてトレーニングされたモデルが、情報のないトレーニングを受けたモデルよりも有意なマージンで優れていることを示す。
論文 参考訳(メタデータ) (2022-10-28T11:47:15Z) - Routine Usage of AI-based Chest X-ray Reading Support in a Multi-site
Medical Supply Center [64.91941409801494]
チェストX線画像の評価のための市販のAIソリューションは、複雑な環境で、放射線医や臨床研究員の24/7を支援することができる。
本システムは, 放射線技師や臨床同僚が重要な決定を下す上で, 利用者によらず, 医療機関や病院で, 画像データを作成するX線システムタイプによらず, 堅牢に機能する。
論文 参考訳(メタデータ) (2022-10-17T08:06:16Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Pneumonia Detection on Chest X-ray using Radiomic Features and
Contrastive Learning [26.031452674698787]
胸部X線における肺炎の検出に放射線学的特徴と造影学習を活用した新しい枠組みを提案する。
rsna肺炎検出チャレンジデータセットの実験により,いくつかの最先端モデルに優れた結果が得られた。
論文 参考訳(メタデータ) (2021-01-12T02:52:24Z) - Fused Deep Convolutional Neural Network for Precision Diagnosis of
COVID-19 Using Chest X-Ray Images [0.0]
複数のニューラルネットワークを微調整することで、新型コロナウイルスと正常者の胸部X線スキャンを正確に分類するコンピュータ支援診断(CAD)を提案する。
k倍のクロスバリデーションとベージングアンサンブルを用いることで、99.7%の精度と100%の感度が得られる。
論文 参考訳(メタデータ) (2020-09-15T02:27:20Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
本稿では,診断パイプラインにおける基礎的,しかし困難な課題である肺分節に対する新しい深層学習手法を提案する。
本手法では, 逆批判モデルとともに, 最先端の完全畳み込みニューラルネットワークを用いる。
これは、患者プロファイルの異なる未確認データセットのCXRイメージによく当てはまり、JSRTデータセットの最終的なDSCRは97.5%に達した。
論文 参考訳(メタデータ) (2020-03-23T14:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。